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ABSTRACT

Discrete data sources arising from real problems are

generally characterized by only partially kno_'a and varying

statistics. This report provides the development and analysis

of some practical adaptive techniques /or the efficient noise-

less coding of a broad class of such data sources.

Specifically, algorithms are developed for coding discrete

memoryless sources which have a known symbol probability

ordering but unknown probability values. A general applica-

bility o£ these algorithms to solving practical problems is

obtained because most real data sources can be simply trans-

formed into this form by appropriate preprocessing.

These algorithms have exhibited performance only slightly

above all entropy values when applied to real data with stationary

characteristics over the measurement span. However, perfor-

mance considerably under a measured average data entropy may

be observed when data characteristics are changing over the

measurement span. The latter observation is a result of the

,,
ability to adjust to both short term and long term variations

in data characteristics.
!

These techniques are applicable to virtually _ny alphabet
i

size arising in practice. A subset of these results is the speci-

fication and analysis of a large class of efficient adaptive coders

v
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for a binary men_oryless source which is characterized hy

unkzioxx n or varying statistic P0 (probability of a zero). A_ail_,

performance xxill be sli#htly above the binary entropy function

xxhen P0 is unchanging but xxill typically be xxell under a mea-

sured averat:e binary entrop_ x_hen P0 is chant_ing over the

measurement span.

These techniques are both e,lsy to use and ,lmenable to

practical high rate implementations. Functions of sums of

data samples provide tight bounds to algorithm performance.

Thus investigations of the effects of alternative algorithm or

prepr_Jcessing configurations can be accomplished without the

need for complete coder simulations. These same functions

also serve to simplify internal decision making. Partially

as a result of the unique cascading of variable length coding

operations, the only implementation requirement for storage

o£ code words is eight binary codewords of which the longest

is five bits.
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I

I. INTRODUC TION

The basic problem we are addressing is one in which discrete data

sources are to be coded into binary representations from which the original can

be retrieved precisely. Thus these binary mappings are reversible. Standard

binary representations of a fixed number of bits/sample is the most obvious

and well known example of such mappings.

The statistical characteristics of most real data sources is such that cer-

tain things happen more often than others, Then, quite intuitively, it should be

possible to reduce the average number of bits required by representing the

frequently occurring events with fewer bits than the infrequent ones. Indeed

this is the case.

The vast majority r,f practical attempts at coding of real sources to

remove this inherent statistical redundancy have used a particular approach,

with quite predictable results. Specifically, after reversible preprocessing

to produce a near memoryless source (take differences from predicted values,

run lengths, etc.) the usual approach to coding has been to determine a proba-

bility distribution and then use the famous Huffman algorithm to obtain an

"optimum _' variable length code. Unfortunately, this optimality is quite

restrictive. The Huffman derived code would give the best average performance

of any _ prefix code (lowest bits/sample) on a source for which symbols

always occurred according to the assumed probability distribution, But the

statistical characteristics of almost any real data sot_r_e change with time,

sometimes dramatically. The assumed probability distribution used to derive

and perhaps test the Huffman code might be utterly wrong part of the time when •

monitored over a very long sequence. At the same time _ may simply be a

distribution which is the result of averaging out many short term variations in

1979014634-012



data characteristics. The point here is that there is room for _mprovcment by

adapting the coding procedures to fit the changing data characteristics.

The theoreticians have only recently started attacking this problem in

earnest under the name "universal noiseless coding."[1] A set of practical

adaptive variable length coding procedures was developed some time

ago[2],-[3] for the specific task of providing efficient coding of spacecraft

imaging data where exact reproduction was a requirement. These algorithms

would now come under most people's definltion of univers._! noiseless coding.

However, because of the ,ather specialized nature of the spacecraft application

the practical versatility of these algorithms to efficiently code a wide variety

of data sources has often been overlooked. This report will reintroduce them

in a way which will hopefully make their general applicability both obvious and

easy to accomplish. Using these algorithms as building blocks, more sophisti-

cated coding systems offering additional performance benefits will be developed.

The latter results are currently used in an imaging data compression system '

called RM2 [4]" [8]

PROBLEM DEFINITION AND BACKGROUND

This section provides further discussion of the practical problem that

subsequent chapters will address as well as the preliminary notation necessary

to proceed.

Some Basic Notation Conventions

Concatenation. IfX and _/ are two sequences of samples then we can form

a new sequence Z by running them back to back as

7 = :X'_'Y (1-1)

using the asterisk as our basic indication of concatenation. However, we _vill

occasionally omit the ':' where no confusion should result.

Z

1979014634-013



'_ Length c, a Sequence, Any seqaence of non-b ,-'_'v samples can be

represented by a sequence of bits using the familiar standard binary represen-

tations which use a fixed number of bits. Without any anticipated confusion

operator 7'(.) will be used to specify the length of such a sequence in samples

or in bits (of its standard binary representation). Then ifX is a sequence of

J samples

5-_'(X) = J samples (1-2)

and if the standard binary representation of ,X requxred 6 bit_/sample

c_(_) = 6J bits (1-3) !i

If _ is already a binary sequence (e. g. , the result of coding) then _¢'(X) will

simply mean the length of X in bits.

General Form of Reve_ sible Operators

It is instructive to characterize the general fore4 that reversible operators

wiU take. Subsequent developments will seem much less abstract. Let Z be

some sequence of, possibly cozrelated, data, and let _r be a priori or side

information about Z. Then a reversible operator of Z would take the form
L

z = = • ,... (1-4)

Each of the fi['' "] represeut mapping operations of 7, and Tr which individually

may not be reversible, but if all the I.[Z,Tr] and rr are available then Z may be

recovered precisely. That is, F[','] has an inverse.

1979014634-014



¢ When

, 7'(Z,') < ._'(_.) (1-5)

in bits then we have achieved a more efficient binary representation of Z, If

this is true fo- many different Z,F[','] may be a useful code operator.

Whether this is true or not, Z' can al_:ays be viewed as a sequence of symbols

to which reversible operators of the form in (1-4) can be applied. Thus we

might g ene rate

= (i-6)

._r by relabeling

Z" = F"[Z,_] (1-7)

Again, if ']'(Z") < '/'(_) for many different Z sequences, operator F"[', '] may

also be a useful code operator. We will make use of these observations in

later chapters. Complex sequence code operators wi}l be built up from simpler

ones.

A Notational Convention

The code operator structures that we will de'_elop and are interested in

identifying generally have many possible alternative internal parameters. Quite

obviously, carrying all these parameters within discussions and block diagrams

would present an unwieldy, if not impossible: notation problem. To avoid this

we will simply omit explicit reference to internal parameters when naming

operators. We adopt the convention of subscripting and superscripting the

syrnbolqJ (and occasional other symbols) to identify operators {structures) and

implicitly assume that a detailed specification can be obtained by reference to

4
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a corresponding parameter string. The development of "the Basic Compressor _'

in Chapter II will be used as a vehicle for introducing this convention.

Simplifying the Problem

A great many practical coding problems which may look quite different on

the surface can be transformed into coding problems with very similar charac-

teristics. Consequently, a solution to a transformed coding problem can have

general applicability. The form of this transformed coding problem will be
i

developed in subsequent paragraphs.
i

Removing correlation. In real problems where samples of 7. are corre-

lated x_-ith themselves or a priori information _, there is usually some simple

transformation which results in new sequences 7' such that the samples are

approximately independent. More important, the uncertainty in what the sample

values will be is usually greatly reduced. The less uncertainty there is the

greater the potential for reducing the average bits required to code. This step
?

is crucial in many practical problems but we will, for the most part,

assume it is already accomplished. That is, data sequences will be assumed

to be from approximately me:noryless sources (no correlation). The user

of algorithms to be developed here would then precede them with appropriate

correlation removing transformations: operator_ of the form in (1-4).

Examples of correlation removing transformations abound. Taking dif-

ferences between adjacent samples along a TV line results in approxinlately

independent difference samples which tend to be tightly distributed about zero

(less uncertainty). A priori information might be the preceding line; appro-

priate use of this additional information generally leads to a similar result h,_t

with samples more tightly distributed about zero (less uncertainty still). A

sequence of samples might also be successive states of a Markov Source or

run lengths from a run length coder.

5

, •

i 9790i4634-0i6



J

•¢ Symbol labeling. Given q possible symbols from some source it is a

, simple matter to relabel them into the numbers O. I. 2.'''q-l. Unless noted

c_.he,'wise we will assume that such relabeling has already been done.

Symbol probability ordering. As part of the same problem, let P = IPi}

be the probability distribution of symbols O, I, 2, • "" q-1. For a wide class of

practical problems the probability ordering of symbols after correlation

reducing operations is a priori known {or at least well approximated). In fact,

this ordering tends to remain the same (or close) even as the actual P may be

changing quite dramatically (e. g.. consider again the independent difference

samples along a TV scan line). It is again a simple matter to relabel source

symbols, if necessary, so that the following conditions are well approximated.

P0 -> Pl > P2 "'' >- Pq-1 (1-8)

_z

Preprocessing summary., Thus we will generally assume that data to be

coded has been preceded by the reversible preprocessing operations summarized

in Fig, 1-1,

Changing

If the symbol probability distributions resulting from the pvcp':ocessing

operations just described were always known and fixed then there would be

little need to proceed any further. The standard procedure oi using the
F _

Huffman algorithm [91 to derive an optimum variable length code for the known

distribution P would yield coding efficiency about as good as could be expected

(unless of course there is " _m for improvement of the preprocessing operations).

However, most real world problems are best characteri_ed by a "changing and

poorly defined P. "
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i

._ Variations of P in real problems appear in many different ways. P may :

, vary simply because separate short sequences are the result of preprocessing

different data sources. There may be long and short term statistical variations

in a single data source (e.g., picture to picture variations in image data caused

by totally different scenes, different camera, lighting, etc. and local variations

for similar reasons). Other than the approximate probability ordering, (I-8),

15 may not be knowr at all. In any case a selected "optimum" Huffman code may

perform quite poorly when the actual symbol distribution is different than the

assumed. This is basically the problemwe seek a practical remedy for in

subsequent chapters.

Practica] Measures of Performance

Entropy definition. Given the discrete symbol probability distribution

= {pi} the entropy H(P) is defined by

H(P)
= -_.jPi l°gzPi bits/sample (1-9)

i

When properly used, H(P) can be a useful practical tool in assessing how well

:± particular coding algorithm performs.

Interpretation of H(P). If Z is an infinite sequence of samples from a

memoryless source with fixed and known symbol probability distribution

= {pi} then H(P) represents the minimum possible expected bits/sample

required to represent 7 using any coding technique. But as we have jl_t noted

most practical problems which can be transformed by preprocessing i,_to

equivalent memoryless problems (]_'ig. I-I) are characterized by changing or

possibly unknown distributions, h, nractice it is generally difficult if not

impossible to meaningfully model the way in which P changes, although the fact

1979014634-019
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that it changes may be quite obvious. Consequently, the equivalent "bounds"

for real data sources with cl_angi,ag P are difficult to come by and we will not

pretend to develop any here. Instead we will principally use (1-9) as a

"practical measure of performance" rather than a bound on expected performance.

The reader may consult the theoretical literature for performance bounds on

idealized data sources.

Except where explicitly noted, the stated performance of a particular code

operator _.[ .] will be based on measured performance on real data rather than
3

statistical expectation based on s_me idealized model, We will generally use aJ

span of K samples much greater than the length of sequence that qj.iI "1 operates

on. Similarly, an average symbol probability distribution, P, derived from

a histograna of the same K samples can be used to provide the desired practical

measure of performance H(P).

If the real data has a somewhat uniform statistical character over the

K samples then HIP) represents a practical bound to average per sample per-

formance of anyCj['.]. An algorithm is performing efficiently if its measured

average performance'is close to H(P). However. if data character changes

significantly over the K samples then average per sample performance under

the measured H(P) may be possible by adapting the coding to suit the changes.

H(P) is still a useful g_ide in those cases and does in fact bound the best per-

formance available with a single code (e.g., a H'fffman code designed for _).

SUMMARY OF RESULTS
1

The principal result of Chapter II is the development of a code operat,-,r

called the Basic Compressor which provides measured performance clos,/to

H(P) (P a priori unknown but stable over the measurement span) for values of
f

H(P) in the range of 0.7 to 4.0 bits/sample. This operator should have broad

9

i
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applicability and Chapters III- V are examples of using it to generate new

operators with additional characteristics.

In Chapter III operators are developed which are capable of extending

these results to much higher values of H(P). Similarly, code operators are

developed in Chapter IV which are capable of providing average performance

close to II(P) for H(P)-*0 as well as the higher entropies. An outgrowth of

these developments is a class of binary memoryless coders capable of perform-

ing close to the binary entropy function as the (a priori unknown) probability of |

a binary zero or one varies between 0.0 and 1.0. These binary operators are [
!

described in Chapter V.

IIn all cases, performance under H(P) has been observed for these

operators when the data characteristics change substantially over the span of I

samples used for measurement.

An extremely useful practical characteristic of these algorithms is that in

each case accurate estimates (actually bounds) of actual performance can be I,

obtained basically as simple functions of the sum of input samples. This allows

for accurate performance assessments without the need for elaborate simula-

tions involving the generation of bit streams. This can greatly simplify the

dete:mination of various parameters (e.g., assessing apreprocessor) as well

as aiding in the creation of new algorithms (which use the Basic Compressor as

a basic tool). Additionally these same functions serve to simplify internal
L

decision making.

10
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II. THE BASIC COMPRESSOR

This chapter will provide the development of an algorithm for efficiently

representing blocks of J preprocessed (see Fig. l-l) samples when P is

unknown and the measured average entropy H(P) lies in the range of roughly

0.7 to 4 bits/sample. This Basic Compressor operator will be used as a basic
4

tool in developing operators with additional characteristics in Chapters III- V.
7

As noted in Chapter I our primary means of identifying a large number of

different code operators will be to subscript and superscript the symbol 4.

However, the first five operators _b0[.]- 44['] will receive dual names to avoid con-

fusion to those readers familiar with the original description. [2],[3] The origi-

nal names offer an additional benefit of being easy to remember.

Several coding examples are given at the end of this chapter.

FUNDAMENTAL SEQUENCE

Rather than seek a code which is optimum for some particular probability

distribution, consider instead a code which is prooably the simplest to implement

and determine the range of P over which it provides "good" performance.

Define the code word operator fs[ "]by

i zeroes

fs[i] = 000 ..... 000 1 (2-1)

where iis an input symbol. The length of codeword fs[i] is

_'I= ,_(fs[i])= i+l bits (2-2)

The coding of J preprocessed sample sequence X - x I ... xj using

fs[ .]is given as •

,1[_1 = zs[_l = fs[xt] _,fs[_zl _ ... _,fs[_j] (z-3)

11
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and will be called a fundamental sequence. We have thus defined our first code

operator for sequences by _I[-] = FS[-].

The length of a fundamental sequence is
-i

J J

--< )--Z )- DF 'r FS[: I 'J (fs [×j] J + j
j=l j=1

or simply the block size plus the sum of the input samples. Note that when X _

is the all zero sequence FS[X] represents ,X with J bits.

Observations

Because of the assumed probability ordering of inleutsymbols in (I-8) and

the codeword lengths in (2-2), shorter codewords will be used more often than

longer ones. As noted in Chapter I, this condition can be well approximated for

a wide variety of real problems by suitable preprocessing. The latter is neces-
J

sary to make the most of a given variable length code such as (2-1). ":"7

A useful practical characteristic of the particular code in (2-I) is the fact

that its definition does not depend on input alphabet size. This assures a wide

applicability of the results to follow in later paragraphs. '.

FS Performance

A plot of the average per sample performance of code operator I_S[']is

shown in Fig. Z-I as a function of measured data entropy H(P) over li samples

where I<>> J. :;

The graph was derived from the results of preproces-_ing many forms of

data such that condition (I-8) was well approximated. The fact that many dis-

tributions can yleld the same entropy under these loose conditions is not of any

practical significance. The graph is not intended to be that precise. The main

point is that FS[.] performance tends to remain close to data entropy H(P) in

the range of roughlu 1.5 to 3.0 bits/sample. If H(P) were always restricted i ;

1979014634-023
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2 3 4 5

MEASUREDENTROPY H('P), BITS/SAMPLE

Fig. 2-1. Average FS[ .] Performance

13
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to this range then, considering the simplicity of fs["], there would be little

point in doing anything else. This is not always the case, however.

FOUR CODE OPTIONS

To extend good performance outside of this entropy range we could seek

to find other codes which performed well for higher and lower entropies. But

in addition we want such code operators to have the same versatility and simpli-

city as FS[']. In particular we wish these operators to be applicable to any

practical alphabet size, q, without substantially increas'ng complexity. Before

defining these alternative code operators we need some additional definitions.

Additional Definition st

Sequence extension. Let Y = ylY2...yj be any % sample sequence. Given

the positive integer e >_1 an extended sequence is formed by terminating ¢fwith

enough dummy zeroes to make the resulting sequence length a multiple of e

Ii.e., e[Jl )as in

9e _
= ylY2.., yj 000.., 0

dummies

The e th extension of sequence Y is then obtained by simply grouping the

consecutive J' =[J]e-tuples ofY e suchas

Y' "z'" zj, : V.xte[ ]

= (Yl Y2 "'' Ye )* (Ye+l Ye+2 ''')*'''

"'" * (YJ-I YJ 00 ... 0) (2-6)

$ [_]means fhe smallest integer greater than or equal to c_.

14
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If each sazrlpleof Y could take on any of q values then each sample

" (except possibly the last)of Y' could take on any of qe values. For our pur-

poses we will use the reversible sequence operator ExtC[ "] when _" is binary

so that samples of Y'can take on 2e values.

As an example, let Y be the 34 sample binary sequence !
!

l.

Y = 1111100001111000011000000000111011 (2-7) tI
[.

[:
then the 3rd extension of Y is given as ,_

1'

Of' = Ext3[y] = (111) ";' (110) * (000) * (111) * (100) t

;:-"(001) -':=(100) * (000) * (000) * (011) "','(101) * (100) (2-8) :

where we have added two dumn_.y zeroes to complete their] = 12 t-h sample of

_',.

C.omplementation. Given any binary sequence we let ,

coMp[.] Iz-9>

denote the operation of complementing each bit of the sequence {i. e. , ones

complement).

Coding FS[X]

Instead of seeking to code X directly in a standard way we instead attempt :_

to remove statisticalredundancy that may be present in a fundamental sequence.

Fir st ]et

F-_[_] _ COMP[Fs[_]] (z-10)

15
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be the result of compl, nenting each bit of fundamental sequence FS[X] and

callit"FS bar. " Now define

= Ext 3 [FS[X]] = aI az''' (2-11) ._

[_= Ext3[F--S[X]]= bI b2 "'' (2-12)

F1where g is the _ sample 3rd extension of a fundamental sequence, and b is

similarly the 3rd extension of its complement (see example in 2-7 and 2-8). By

these operations we have simply lumped the fundamental sequence, and its bit

by bit complement, _nto 3-tuples and added enough dummy zeroes (none, one or

two) to complete the last 3-tuple.

8-word code. A simple 3-word variable length code i .efined in

Table 2-1.

Table 2-I. 8-word code, cfs[.]

Input Output
3-tuple Codeword

cfs [od

000 0

001 t00

010 101 :

100 II0 '

011 11100

[ - 101 11101

1._0 11110

111 11111

l'
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If we view the bits making up a fundamental sequence as approximately

binary memoryless then B-tuples with more zeroes will tend to occur more

often when zeroes are more likely than ones (active data). Under these condi-

tions the assignment of codeword cfs[c_]to binary 3-tuple _ in Table 2-1 assures

that shorter codewords will be used more often than longer ones. Sequence

in (2-11) is ready for a direct application of cfs[-].

When binary ones are more likely than zeroes (inactive data) the situation

is reversed; 3-tuples with more ones are more likely. In this case the assign-

ment of shorter codewords in Table 2-1 to the more likely 3-tuples can be

accomplished by flipping the right-hand column over or by simply complement-

ing all input 3-tupies. Then sequenceb in (2-12) represents a preprocessed

fundamental sequence mhich is ready for a direct application of cfs[-].

We are now ready to define t_,'oadditional code operators called "code fs"

and "code fs bar". These are defined as follows

= cFs[5]= cfs[al]* cfs[a2]*... (Z-13)

and

%[_.] = CF-S[X] = cfs[bl] *cfs[b2]* ... (2-14) t!t"
where the a. and b. are defined in {2-11) and (2-12). I'

1

As will be seen shortly, the fact that a binary memoryless model is not a
|:

perfect match for a fundamental sequence is of no practical significance.

Block diagram. Block diagrams describing code operators CFS[']and

CF-"S[.] are shown in Fig. Z-2. We maintain the dual ..ct."+ion of %b0[. ] and _2 [" 1

for later use. _

1979014634-028



1979014634-029



I

I

All zero sequence. In the special case when X is the J sample all zero

sequence we have

_/'(CFS[I_]) = 5[J/3] bits (2-15)
\

and

(7' CF'S = [313] bits (2-16) :

Recall that these numbers compare with J bits required by operator _

FS[-. ].

Unity Code Operator '_

We can trivially add a fourth code option to the possibilities b_, defining ""

%[X] (2-17) :

as any fixed length binary representation of X. In the simplest case we can

take _3[X] as X itself.

q_3[X] -- X (2-18)

However, recall that in many applications the X sequence we are coding is the "-

result of reversible preprocessing operations _ee Fig. 1=1). The function of

such operations is to remove correlation and by relabeling, produce a symbol

stream for which the desired probability ordering in (1-8) is well approximated.

However, these operations may also effectively increase the alphabet size.

For example, taking differences between adjacent samples increases the number

of possible sample values by two. Thus a direct fixed length binary representa-

tion of a Freprocessed X sequence may actually require more bits than a direct

fixed length representation before preprocessing. In this case it would be more

advantageous to interpret d?3[X] as a fixed length binary representation before "

reversible preprocessing.

t

' s 2
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T
Keeping in mind this more general interpretation of 4J3[.] we will for the

most part assume tl,e sDecial case in (2-18).

}
Average Performance

A block diagram showing the four code operators _i[-] discussed thus far

are shown in Fig. 2-3. Measured average performance for these operators is

showr, in Fig. 2-4. The graph for FS[.] = _i[-] has been transferred from Yig.

2-I. Again, performance has been measured over spans of K samples much

greater than the J sample length of X. Other than making q or J too small to be

meaningful, the values of these parameters has littleinfluence on the location

of these curves. However, an input alphabet size of q=25 was chosen to show

the fixed position of the _3[_[] = curve.

The three curves for CFS[.], FS[-]and CFS[-]are almost a perfect match

in the sense that when one starts performing poorly (away from the 45 ° entropy

line) another starts performing well. 7his should not be surprising since

CFS[ "] and CFS[-]obtain improvements over _'S[-]by coding redundancy left

in 3-talples of FS[X]. if FS['lis performing close to FI(P) then there can be

littleredundancy left. Otherwise CFS[-] or C_'S[.]would be performing under

the entropy. For individual fixed coding algorithms this is impossible.

The main observation is that these three code operators offer options

which can provide efficient averag_ performance when data entropies lie,

roughly, in the range of 0.7 bits/sample to 4 bits/sample. Operator definitions

do not depend on alphabet size, q. The additional unity operator, _3 ['], is

available free of charge in most digital systems. Thus we should be able to

provide a simple yet efficient adaptive coder (universal coder) by selecting

between these four options.

2O
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i ' II I .. I'/
/ / _/

jo3c'l / >I < I
(EXAMPLE WITH q =2"5_ '''' / _/ -- _'

I ,,/_°'?/_/
.I

I10

Z

y> / K -= MEASI;R['MENT SPAN >>J
< 2 _ ,r.,,',"' t

_" _ "- // P -= MEASUREDAVERAGE PROBABILITY. _ DISTRIBUTION OVER THE K SAMPLES

-//i

1 / ,.-

1/3

0

0 1 3 5 6

MEASUREDDATA ENTROPY, H('P)BITS/SAMPLE

Fig. 2-4. Average Performance, CF-'S['], FS['], CFS['], d;3[']
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ADAPTIVE CODER

We are now ready to define an adaptive coder which selects a code option

from the four choices_b0[-] = CF--S['], 41I-] = FS[-], 42[-] = CFS[-]and

43 [.]. Letting ID be the selected code operator for a given J sample input

block a "Basic Compressor" output takes the form
?

44[_1 = Bc[_] =- ID * 4,D[X] (Z-19)

i
where the concatenated ID is assumed to be a Z-bit binary number whereas, as

a subscript to ¢ it takes on the values 0, 1, 2 or 3.

Observe that ID is really a function of X which partitions the space of all I

input sequences into four decision regions and takes on the corresponding values

0, 1, ? or 3. (Carrying the full ID[X] would obviously cause notational problems).

It remains to specify this decision rule to complete the definition of

44[- ] = BC['lin (2-19).

Optimum Decision

The most straightforward, and in fact optimum, selection procedure is to

simply choose the code operator output sequence which is the shortest. While

this might be considered brute force, the simplicity of the code options makes

this approach quite feasible in many applications. We will provide a simpler

procedure later. The optimum decision rule can be stated simply as i,

Choose ID such that i

J

Z3
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The Basic Compressor code operator would then require

bits/sample to code _n input data block X, where the second part is assumed

to be the smallest of four possibilities.

The overhead cost in identifying the code choice is

2/J bits/sample (2-22)

which could obviously be diminished to insignificance by increasing J. How-

ever, other considerations guide the choice of bleck size J.

A measured average of the second term in (2-21) will tend to decrease

as J is decreased because of the ability to switch codes (adapt) more frequently.

This effect will more than compensate for increasing overhead until eventually

overhead dominates. Thus there should be a best block size. Runs on various

forms of data by the author and Spencer and May [10] suggests that this best

block size lies in the range of 16 to 25. _ The main observation is that J is not

a critical performance parameter and can be chosen primarily for implementa-

tion considerations, We will emphasize a block size of 16 for these reasons,

Later we will have reason to consider variable block sizes.

Average Performance

A graph of the measured average performance of Basic Compressor

operator J#4 [.] = BC[.] of (2-19) using either the optimum decision criterion in

(2-20) or a simplified rule to be introduced later is shown in Fig, 2-5. As in

earlier graphs HCP) is the average measured data entropy over a span of K

tTest cases originated from image data.

24
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WILL TAIL OFF TO _. _,,_ /FIXED LENGTH BINARY f_

7REQLIIREMENT(e. g.
''7

' f,j

,.-4 _ .-"!-!'"

II

_ 2 /_!:_.__. r_..._ O'_ K :MEASUREMENT SPAN IN SAMPLES

_'*!_" " K >:_"J -- BLOCK LENGTH

>
.<

/.j
0.43

(WITH /J=16

0
0

AVERAGE ENTROPY, H('P), BITS/SAMPLE

Fig. 2-5. Typical Average Performance of Basic Compressor
_4[. ] = Bc[.]
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j,

input samples, where K >> J. A range of possible results is shown within

the crosshatched area, depending on the variability of data statistics over the

measurement span of K samples. When distributions are stable then average

performance slightly above H(P) is typical (e.g., 0.25 bits/_ample) throughout

the range of 0.7 -< H(P) -< 4. However, when data distributions are quite vari-

able over the K samples then performance considerably under H(P) is possible

(we are assuming that probability ordering in (1-8) remains well approximated

as distributions vary).

Comments. Note again that J is not a critical parameter. The rough

performance description in Fig. 2-5 would generally be unaffected provided J

is not so small that overhead becomes dominant or ao large that the advantage

of adapting disappears. If alphabet size q is very small then a performance

description up to 4 bits�sample is not meaningful since a fixed length binary

representation, 0_3[-], can do better. However, Hilbert[ll]has obtained good

results using the Basic Compressor on processed data which has small q

(e.g., q= 3, 4, 5, ...).

The main point should noL be missed: the Basic Compressor can be

expected to give efficient performance over a wide range of data entropies

with no prior knowledge of distribution P (ordering in (1-8) excluded). In

later chapters we will extend efficient performance first to higher data

ertropies and subsequently to very low entropies near zero. in these cases

and others the code operators that result are essentially generated by pre-

processing data into forms which can make effective use of the Basic

Compressor,

26
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USEFUL BOUNDS AND ESTIMATES _ ]{
].

There are some situationswhere itis desirable to minimize the

computation and memory requirements needed to make Basic Compressor deci-

sions and to estimate performance. The relationshipsbetween 40[°], 41[-]and

42[.]may be used te accomplish this yielding the functions of input X c
!

YO' YI' Y2 and Y3 where_ ';

YI(X)-- F = £/a(O?l[X]) (See Eq. 2-4) (2-24) :

and

¥3(X}_ constant (2-26) :

These are all simple functions of F which is itself just the sum of data samples _

plus the Basic Compressor block length (__-4). ,!.

t
[_lmeans the smallest integer greater than or equal to _. °

Z

ttThe functions Y1 and Y3 are trivial and ¥0 and Y2 are easily derived, Sup- #

pose FS is a string of all zeroes, then by Table _.-1 each 3-tuple is coded

( )rfl.into one bit so that _? 0?0[X] = Now start changing zeroes of F--S into

,,ones. Each change will increment_ 0[ by at most 2 bits. The increase

will be less than this only if an all ones 3-t_ple is created, Since is the

number of 3-tuples and F-J the number of ones in F--'Swe '°''(*0t_3): [--_l '
+ 2 (F-J). Using the same argument on FS, using J in place of (F-J), yields

¥_ in (2-25).
d

27
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The relationship of the ¥i(X) is shown more clearly by the straightline

approximation in Fig. 2-6. The lower envelope of these curves, shown with

heavy lines, is essentially the simplified decisi.n rule we are seeking.

S__implified Decision Rule

Instead of comparing the actual bit counts for the four options as ir (2-20)

we couldi_ste_d use the following rule: Since the yj(.) are really functions of

1_ we choose ID such that

YID(F) : rain I_,(_)I (2-27)lj I
3

This rule simplifies further to the rule in Table 2-2 where we assume

that fixed length coding of X by '_3[']requires rn bits, and m > 31.

The expression 3(m-2J) Js the approximate result of solving Y2(X) in

(2-25) for the F which gives ¥2(X) _>m.

Using these rules the Basic Compressor operator, %[']in (2-19), could

require no more than 2 + ¥1D(F) bits to code X. But then certainly a coder

which used the optimum criteria in (2-20) could require no more than ¥ (F)
ID

bits either. Thus yio(F) may be used to bound the performance of either

system. In particular, we have

We can now see that ytD(F) is the lower envelope to the curves in Fig. 2-5.

3.
Note that there are two critical points on the graph. Below F = _J

_0 ['] = CF'S[.]will always perform better than FS['I - d#l['] while above F=3J

(and less than 3(m-2J)) d#2[ .] - CFS[ "] will always perform better than FS[ '] . In

these cases the simplified decision, criterion in (Z-Z9) would make the same decisious

a.q the optimum criterion in (2-19). Between these two operating points there

28
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JEXAMPLE I

4J -- _ y3('_) if q = 161 _, . / "_

_ 3J
N

o , }
T

Z

LOWER ENVELOPE

/' { _lYlD(F)=mln y I(X_J -----_ ..,, --- .I
J SASlCCOMPRESSORStOCKSiZE

= FS LENGTH = 'f(FS[X]_F

' I

J 2J 3J 4J 5J 6J

FS LENGTH, F

Fig. Z-6. Plot of yio(F) vs F
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?
_2

Table Z-2. Another Form of Simplified Decision RuleJ" :

Condition on

Operator Fundamental Sequence
Decision Length :

*0[.] F-< 3[J/2J

¢1['] 3 [s/zJ < ]_-< 3J _

_z['] 3J < F < 3(m-ZJ) _
?

_3['] F ->3(m-2J).,

J

is some possibility that either q_0[-] or _Z[ .] might perform better on a given

X than operator FS ['] = d_! ['] which would be chosen by the simplified rule. But

experience on real data has shown that the vast majority of the trine FS[ "] is "

indeed the best choice. There is also a remote possibility that _bZ['] could

perform better than q_3[-] when F > 3(m-Z J). Again, experience indicates

that _2 ['] is usually the best choice. Thus the difference in performance
5,

between a Basic Compressor using the optimal decision rule and one which

uses the simpIified rule seez,-ns to be insignificant from a statistical point of
I

view. :,
/

"YID(F) as an Estimate

The measured performance of the Basic Compressor operator qJ4 [ .]

:_hown in t'ig. 2-5 is a plot of the long term average of Eq. (Z-Z1). We have

just noted that the choice of decision rule would have a negligible impact on

these results. In addition we have the following useful observation that a long

term average of ,

Z _/'°(F)-_ (z-z9)J J

[aJmeans the greatest integer less than or equal to a.

30
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x_ill tend to yield very nearly t'h_ same results. That is in a statistical sense |.

we have, for ei.ther decision rule*, _!
• 4

and
{

Thus tl,ebound in (2-28) is statistically tight.

This is an extremely useful result. In simple ter ns it means that Basic :

Compressor performance can be estimated (and bounde.0 quite closely by add-

ing up irout samples (Eq. 2-4) and then computing _ (F) using the simpleID

expressi,:ns in (Z-23) through (2-26). The actual coder need not be implemented

to determine performance.

Looser Bounds

Note from Fig. 2-6 that the function ¥ (F) is convex n. Thrs we have
ID

{ } -E yiD(F) _<_/ID(F) (2-32)

wher e

Direct substitution in (2-30) yields a looser bound. Whereas E {N0o(F)} takes

into account the ability to switch codes each J samples, E{_/10(F) } assumes

only the ability to pick the best of four codes once,

;]

rE{'} denotes expectation.

31
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A practical application of (2-_21 to bounding the performance of the

Basic Coll_,_ressor over a long sequence Y = yly 2 -,- YK where 1"_"'3, is quite

straightforward, Dctern_ine 1_'=as _

F = _- < + y (2-34}

i-1 /

and then bound average per sanlple performaqce by

2 Y_o(FI
-- _ (_-' _5),! J

Variable .I. In all cases so far x_e have assumed that block size .1 was

fixed. However. we will later have reason tt, consider variable block sizes.

Here we derive a useful result for later use. l,'irst supplement the function !.

(t:'..l). If we fix i" at i." and plot 3' (I," .1) as a functio,aYIo(F') with ,1 as in YtD IO

of .) we wot,ld find it is also convex n. Then we have ::

v,'hel'e

7 = t.:{,_} (e-_7)

But then if both I," and ,1 vary
(

_- _:{vo(Y,._}} {z- _8} ,

-- y D(I,' ,I) _2- _91 '

t" K is assumecl to be a multiple of 3. _,

32
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We recognize (2-38) as the previous result in (2-32.).. Thus (2-39) ..

provides a slightly weaker bound to Basic Compressor performance.

BLOCK DIAGRAM

7

A block diagram of the Basic Compressor using the simplified decision

rule is shown in Fig. 2-7.
J

EXA_4PLES

Example 1

Let the input sequence block size be J=16 and the alphabet size q=16.

Then suppose

X1 = 0,0 0,0.0,4,0,0,0.4,0.9 0.0.1,0 (2-40)

Fixed lensth, _3[._1]. A standard binary representation of X1 is easily

obtained as a sequence of sixteen 4-bit codewords. Then, obviously

Fundamental Sequence, _1[._1]. A fundamental sequence is obtained

using (2-i) and (2-3) yielding

..

Fs[F:I]= ¢1[_1] -- i, I, I, I, 1 ooooi,I, i, 1 ooooi,i, oooooooooi,I, I, oi, I

(2 -42)

33
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where we have separated individual codewords by commas. The length of this

"FS" sequence can be obtained by counting or by using (2-4)

J

F = 'J'(_I[XI])= J +Exi = 34 (2-43)
i=l

F-S[Xl] is obtained from (2-42) by complementing each bit. Sequences

and _ in (2-11) and (2-12) are obtained by grouping the bits of FS[X1] and

F"S[X 1] into 3-tuples and adding enough dummy zeroes at the end to complete

the last -tuple.

= 111, 110,000, 111, 100,001, 100,000,000,011, 101, 100

(2 -44)

"- 000,001, 111,000,011, 110,011, 111, 111, 100,010,000

(2-45)

Now applying the code cfs[.._in Table 2-1 to sequences _ and b as in

(2-,13) and (2-14) respectively we get

%[Xi]=c;s[XI]

= 11111,11110,0,11111,110,100, 110,0,0,11100, 11101, 110

(2-46) _"

1

|
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"_' and

• .

%[i1]=c [iz] i:
I

= O, 100, 11111, O, 1] 100, 11110, 11100, 11111. 11111, 110, 101.0

(2-47)

I-
4'

By adding bits in (4-4o) and (4-47) or by adding codeu ord lengths x_hen using
b

Table 2-1 we get ti

(2-4s) ,_-

¢

Thus the opti:uun_ decision criterion of (2-20) would select

¢I[X1] = I,'S[X1]as tile coded output sequence to use. ;'I{XI] would be preceded

by a two-bit identifier for a total of 30 bits.

Using the sinlplified rule in (2-27) would have yielded the same results,

Example 2

As another example take J -: 20, q _ 16 and

_, = 1,0,i,I,5,3,0, i,3,7,1,1,.'-,0,I,1,2,2,8, t_ (Z--Ig)

Then generating an FS and breaking it into 3-tuples as before xve get

/_ = Ext-'|FS[X 2 = 011.010,100,000,100,011.010,

0(71,000,000,010, 100, 106, 110, ':

100, 100, 100, 100, 0tl0, 000, 100,

000, 010 (2-50)
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Again using Table 2-I we could generate ¢z[X2] = CFS[X2]. Insteaa we put

-, ])down the corr&'sponding c'ode_"ord leng'ths, .7" fs[x i , "th_ s_m of x'hich equals

.-

5, 3, 3, 1,3,5, 3, 3, 1, 1,3,3 3, 5, 3, 3, 3, 3, 1, 1,3, 1, 3 (2-51)

From (2-50) and (2-51)

and

'I'(,,3[Xz] ) , 80 and 7'(.0[X2]) > 68 so that the optimum decision is #2 [-]. ::

Simplified test. The same decision results from the use of Table 2-2

wher e _.

60 < F < 120==>02[-] (2=54)

Estimate. Using Y2(X2) in (2-25) we have i

_2(X2) = [F/31 + 23 = Z3 + 40 = 63 (2-55)

t

Using tileresult in (2-55) \re see that the bound in (2-g5) is achieved,

Example 3

Now take J=20 again but suppose X3 is a sequence of zeroes

X3 = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 (2=56) '..

37

1979014634-048



'¢

Using (2-4), F=20 and

r_ +l. s - ° .

yjD(F) : YOIR3) : : 7 (2-57)

Actually going through the coding procedures for _0[-] yields the seven bit

binary sequence

Y0[23]= 0000000 (2-s8)

Adding t_vo bits for identification of the code option gives from (2-19)

_4[X3] : BC[i3]= 00':'0000000 (2-59)

Example 4

Now suppose we have the sequence

= X2 ;:"X3 (2-60)

where X2 is the sequence of example 2 and X3 is the all zero sequence of

example 3.

Letting %[-] denote the operation of using the Basic Compressor on each

Xi separately we have

q_5[Y] = q_4[X2] ,:, _4[X3] (2-61)

Using the previous results we have

_1'(,[_]): 4+ 63 + 7 : 74 bits (2-62)5

Recall that either an exact bit count or use of the estimator _¢ (.) yields this
ID

result.

8 i
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Now compute the average FS length from (2-34) as

-- 1
F = _-(88) = 44 (2-63)

B

Then using F in (2-23) to (2-26), the minimum yields

y (Fl= T (2-64)
ID

Average performance of Y is bounded by (2-35)

2 44

2--0-+ _ = 2.3 bits/sample (2-65)

This compares with actual average performance derived from (2-62)

74

7_-_= I.85 bits/sample (2-66)

The reader can check that he would obtain essentially the same result

by coding Y directly using the Basic Compressor (i.e., %b4[Y]).The overhead

term, 2/20, in (2-65) would be reduced to 2/40. The key observation is that

using 94[" ] on all of Y gives up the ability to adjust the coding to variations in

data character, which in the case ofX2 andX3 are quite extreme. Here, the

advantages of adapting are much more significant than the slight increase in

overhead.

OTHER OPERATOR DEFINITIONS

Operator _5 ["]

Let Y be an N sample sequence of samples which is a priori partitioned

into q smaller blocks, Yi' so that

'_ = Y1 * % *"" * _q (z-67)
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_' composed of Ji samples each where

.- ° ,- ° " I]

N =EJi (Z-68)
i=l

Then we define the block by block Basic Compressor coding of Y by the

operator %55["] where

%55[9%54[] ]...... ] (z091= 1 2 "'''" %54 q

An example of qJ5[-]was given in (2-61).

By defining %55[-]we have lumped all the possible lengths of Y and all the

possible ways of partitioning Y into the Y.. In most cases N and a specificI

partitioning would be fixed for a given application. The most obvious and prac-

tical situation is when N is a multiple of some fixed Basic Compressor block

size ].

Variable N. In Chapters IV and V we introduce an application for which

N is a priori unknown for each Y sequence but is available at a decoder for

decoding purposes (i.e., it is transmit_.ed separately). Then we define

%56["] (2-70)

as a code operator which codes Y by first choosing a preselected block parti-

tioning assigned to N and then applies the correspondin_ form of %55[-]to Y.

Whereas there are many possible rules for partitioning, the following seems to

be quite suitable and practical:

Partition Y into q blocks, where

40
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,]

'1 = (2-71)

1 otherwise

and the firstq-I blocks have J samples and the last, N-(q - l)J samples. That is

Jfor i<q

Ji = I (2-72)

N-(q-1)J otherwise

Quite obviously, _5 [-1 is a special case of _[ ,1 for which the length of

is predetermined and fixed.

Performance Bounds and Estimates

The function 3_4(.) in (2-28) provides a useful bound and estimate of the

performance of Basic Compressor operator _4 [']. It is equally desirable, and

a simple matter, to assign similar functions to more complex operators as

they are developed. That is

!

for each Oi[-_ 1. As an example and a result for future use we have from the i)

developments above, for j = 5 or 6, I
t

I1 8

i=! 1

and can expect that typically
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III. EXTENDING PERFORhYLkNCE TO HIGH DATA EiqTROI_IES •

Using the Basic Compressor to directly code long sequences drawn from

average distributions P which have entropies greater than 4 bits/sample results .

in relatively inefficient performance as noted in Fig. 2-5. That is, the curve :2

for average performance will move away fromH(P). This chapter addresses

that problem and provides a simple means for achieving efficient performance

at the higher entropies, i

SPLIT SAMP:_ES

Let 1_In be some sequence of N preprocessed samples for which the

probability ordering of (I-8) is satisfied, The symbol n signifies that the

standard binary representation for _n requires n bits/sample. Define the
I"
t

"split sample" operator ssm[ '.]by
%

ssm[_dn] = _4m _:.£k, m+k=n (3-1)

where

_k __, N sample _equence consisting of the k least significant (3-2)

bits of each sample of 1VIn

and
/

l_km = }N sample sequence consisting of the m = n-k most

significant bit_ of each sample of l<in (3-3)

and sSn[M n] = _n. ':.

Clearly SSm[ - ] is reversible since each sample of _n can be reconstructed

by cornbining the corresponding samples of IVITM and _k. We can Lherefore con-

centrate on the efficient coding of h_Im and _k from which 1VAn can be retrieved.

A sample block diagram showing ssm[ .] is provided in Fig. 3-I.
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ENTROPY C ONSIDERATIONS

Definition_

Let P be the average distribution of the N m-bit saml tes from M °m

Let _3(m) denote the per sample performance of the Basic Comlc.'essoz

,',m
operator applied to sequence M . That is

j3(m) - (3-4)

where _= 5 or 6 (see 2-71 and 2-72).

Observations
/

If the distribution "P on the original input _amples 1_ n approximates then

desired ordering in (1-8) then so does each P on the m most significant bitm

samples. In addition as m decreases (fewer significant bits in eac u sample)

the distributions Pm become more peaked around zero and the entropies H(Pm)

decrease. For our purposes here we note from experimenta! observation that

if H(_rn) exceeds approximately 4 bits/sample

_ m

H(Pm_I) ,_ H(Pm) - 1 (3-5)

That is, one less bit of quantization reduces the sample entropy by approxi-

mately one bit. This provides the key to obtaining efficient performance at

higher entropies. :'

Example

: Suppose H(Pn) = 5.5, then we know that a di_ect applicat'on of the Basic

Gomp1_o4cr using !,5[-:will ,_u_produce efficient performance since H(]Sn) -_4.

That is, _(n) is not close to H(Pn).
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Applying Q5[. ] to _In-1 x_ould still yield inefficient performance on the

n-1 most significant bits since by (3-5) H(Pn_I) = 4.5 >4 (see Fig. 2-5).

I-lowever. H(l_n_7. ) = 3.5 < 4 so that we can expect that the Basic Com-

pressor, via operator Q_[-], will yield
D

_(n-2) = H(Pn_z) (3-6)

Then dshlg (3-5) twice wt, have

_(n-2) + 2 -- H(Pn) (3-7)

This suggests that we can obtain efficient coding of the original input data 1_In

by coding l_ln-2 with tiae Basic Compressor and transmitting all the least signi-

ficant bits, _2, separately.
l

SP/ IT SAMPLE MODES

Definition

nl.

We define the set of _Jperators _7 I" ] by

_7 [M ] = -,- , f =5 or 6 (3-8)

where l_Im fl k_nci are defined in (3-1) - (3-3).

Block diagram. A block diagram ofg_[- ]is given in Fig. 3-2.

Average Performance

n-i

The per sample performance of operator _7 [" ] over the N samples is

given as

7 LM]l
,_(m) = N - l,(m)+ k (3-9)

Actual n,easurements of the ,r(m) are shown in Fig. 3-3 for n=8 bit input

sa_nples and N large.
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ADAt'TIVE O]'ER:\TOR. "'8 [*]

W,. observe from 1.ig. 3-3 that at least one operator has average

performance that remains close to tile avct,h_e entropy line ll(t)n). Thu_ we

need only select the proper one to use. Define operator,.,8 [-] by

_-i,,_ 1,1,[_t':] (_-10)
.,,st _ J 111' ::: '" 7

where m w is a selected valu., of m (the concatenated m' being interpreted as a

binary n, lmber).

Observe that m I {just like ID in (2-19} is really a functio,1 of _I n which

partitions the space oi all inpt, t seqt:ences into decision regioqs and takes on the

possible values of m. It remains to specify this decision rule to complete tl:c

definition of ,,8 [" ].

Opti,num Decision

Using the optimum decision criterion (counting !)its) we choose m I such

that

'_ _ : ) - ,,,i,, _ (q,7 ti:"
I_1

Simplified Rule

Proceeding as _ e did in Chapter _I we can bound and approximate the

., Illt.--. 11"1 ' (2performance of each Y7 [lxl j by uslnv -7-t) and (2-75), We have from (3-s)
*'or t =5or ,,

Ill .".11"1_" '_7 [M j] - _'"'-7 (fin)_ "r}(_:tn) I-Nk (,-12)
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where Yf(N1 m) is a bound on the performance of operator _l'] applied to
• _ Dt

the m MSB_s of _1n and Nk zs a count of all the k LSB's of input sequeJ:ce M .

By the observations in (2-33) we also have typically

. 111

v' _q_7a L/_tnj} z Y7 (3-1 3)(_I n)

We can now specify a simplified rule for determining the choice of m.

Choose m' such that

m (_n) (3-14)Y a'(iVln) = rain Y7
l'll

Letting 'j'(m')denote the number of bits required to represent a decision

(i.e., m') ,re have

m"M ) (a__15)_< = 'V'(m')+

and where typically o:

'1' " ll

Block Diagram, @8 [.]

A block diagram of operator _8 [- ] using the simplified decision rule of

(3-14) __s shown in Fig. 3-3.

Block Size of _1 n

We assumed that the length of sequence was large to obtain the statisti-

cal performance results for individual split sample modes in Fig. 3-3. However,

t Note that the length of a fundamental sequence generated by using m MSB's can

be related to an FS length generated using fewer MSBWs by the sum of the addi-

tional split I.SB's,
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there is no fundamental -eason that N be large. In fact, the tradeoffis much

like that required in choosing a good Basic Compressor block size in

Chapter II. The smaller N is, the more rapidly operator qJ8 [ -] can change to

accommodate variations in data statistics. At the same time per sample cost

in overhead to identify the selected split sample mode, _'(m'), increases.

For most typical applications the choice of N is not critical and one simply

chooses N to be some convenient value which is large enough to make/f {re')

negligible. For .,xample if there are four split-sample modes included as

options and the data character is slowly varying then a convenient block size

of N=64 {e.g., four Basic Compressor blocks using 3=16) only adds the

negligible overhead of 1/32 bits/sample. In these situations the average per

sample performance of operator _8 ['], using the optimum or simplified deci-

sion rule, will generally ride the lower envelope of the curves in Fig. 3-3

{where the computation of average performance and entropy is assumed to be

determined over some N' >>N).

When the variation of data statistics is more rapid, the average per

sample performance of _8 ['] may be less than the average entropy. Ir special

cases it may be advantageous to choose N as small as the length of one Basic

Compressor block 3 {e.g. , 16). That is, the additional adaptivity may more
,o

than compensate for the increase in overhead, v In fact additional simplifications

turn up once N is constrained to equal J.

Note that it is a simple matter to investigate the effects of changing parameters

j ,
(N,J)usingestimators y8(.), _71-), etc. Complete simulations are replaced ,

primarily by counting operations,
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Operator ¢85[- ]. With N=Jwe are led to simplify ¢8[.]to the following

n]ss ;,'." if ss = 0

J[ n]: 13-171_8

rn I

ss;:=m' ':=+2[N_ ] ',_ik' if ss= 1

The binary term ss indicates whether the input data is to be split or not.

If ss=0 the t, nmodified input data is coded di ctly using the Basic Compressor

operator qJ4[- ], whereas ss=l designates a split with m' indicating what the

split is as for _8[']. However, unlike _Jd[-], the split .ASB samples making up

_nl' are coded using code operator _2[.] = CFS[.] only, rather than the four

options of _4[']. This eliminates the need for the two ID bits associated with

04 [.] . It also simplifies the decision rules since there is only one code option

for each split mode.

Based on observed performance using high entropy image data, @8[.] and

_8J[ • ] perform essentially the same with N = J= 16. This is because a ¢4[" ] deci-

sion is almost ahvays to use &Z[.-]when entropies are high. A slight improve-

ment in average performance can be obtained by including _1 ['] = FS['] as an

additional option when ss=l in (3-17).

Further Simplification Notes " :'

In some applications decision making can be further simplified with little
t'

loss in performance. For example, the correct split-sample modes can be

accurately predicted from the results of coding previous blocks in the applica- !

tion described in Refs. 2 and 3. In other cases the computation associated with

determining fundamental sequence lengths for each IV.m (adding the split MSB and

LSB samples) canbe reduced. This result is obtained by no_ing that when
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entropies are high, a fundamental sequence length associated with the m MSB's

of a sequence will (typically) be roughly half that for the m+l MSB's.

Movin8 the Preprocessing Operations

All the discuss'ons thus far in this chapter have assumed that input data

has been previously preprocessed as described in Fig. 1-1. In some applica-

tions the split-sample operations can be performed before this preprocessing

with precisely the same average effects. An important example includes the

differencing of adjacent image samples as described in Refs. 2, 3 and i0.

Although the san]e performance can be expected, it is more difficultto provide

a parallel in_plen_entation of the code estimators when there are several split :

sample n]ode s.

EXAMPLE

The following exa,_ple should help make the previous discussions seem

less abstract. Let

_In = Yl"n,:,YZ-n_,,,Y3_n (3 - 1 8)

be an N=52 sample preprocessed input sequence partitioned into three (Basic

Compressor) blocks of Jl = 16, J2 = 16 and J3 = 20 samples respectively where

Y1 - 3,5,1,0,2, I,2,2,7,10, I0,2Z, 14,7,0,14

_n _

Y2 22,22 3,0, I 5 3,0,21,17,5,4,5,1,7,13J _ J

n •

3 -= II, 2, 5, 7, 2, I, 17, 3,6,6, 2, I, I,5, 6, 6, 6, 2Z, 16, 0

(3-19)
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We assume that the data originates from a source with alphabet size q = 32 so

that n = 5 and we wish to code NIn using operator 48['], assuming t_vo split-

sample modes with re=n=5 and m=4.

Simplified Decision

Referring to Fig. 3-3, we first need to determine which split-san.pie

5 4
mode to use by comparing the estimates ¥7 and _7"

m=5. With m=5 we have from (3-12) Y7- (/_I5) = Y5(_I5) which by (2-74)

is simply the sum of the Basic Compressor estimates on each of the input

blocks, y4(Ir5). Performing the required computations using the methods of

Chapter II we get

5
_7 (l_In) = 73 + 82 + 91 = 246 (3-20)

m=4. Representing the samples of l_I5 as five bit numbers and applying

split-sample operator SS4[.] (described in (3-1)-(3-3)) we obtain, with an

obvious extension of notation

!_i4 = M1-4, M2-4. M3-4 , _1 = _11 * L2~l. L3-1 (3-21) II

I-

where 1

M1-4 = 1,2,0,0,1,0,1,1,3,5,5,11,7,3,0,7

I_14= II,II, I,0,0,2, I,0, I0,8,2,2,2,0,3,6

~4
M 3 = 5,1,2,3,1,0,8,1,3,3,1,0,0,2,3,3,3,11,8,0

(3-zz)
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and the least significant bits are
%

2

1
_I = I, l, l,O, O, l.O, O, l,O, O,O, O, l,O, O

~1
L 2 = 0, O,l,O, 1, 1,1, O, l, l, l, O, l, l, l, J

_3=I 1,0,i,i,0, I,I,I,0,0,0, I,I,i,0,0,0,0,0,0

(3-23)

Then

y5(_4) = 55 + 59 + 68 = 18Z

",,4

using Basic Compressor operator _Z['] = CFS['] on each M.. Then by (3-1Z)i

4, ,,, 5 y 5(i_i4)Y7,M ) = + 5Z(1) : Z34 (3-24)

Decision. The decision rule in Fig. 3-3 would lead us to select m=4

sincey4(_5)< y5(_5). Since there are only two possible split sample modes

we have from (3-Z4) _nd (3-15) _,

(*8E_])__ (_-_51 ,_
Actual Coding

The actual coding of _n takes the form

m'r_ n_

,8[M n] = m' ',_%u7 LM- J :_

= m' _ *511_Im'] * _k (3-Z6) ,;

%
55 _,
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By previous results we have decided to use m' =4 which can be arbitrarily

represented with a binary 1. Then (3-26) can be expanded _o

dds[_n ] = 1 _:." _4[MI]_:" %[_i4];:._dd4[_i4] .:._I (3-27)

ys(f 4 )Noting that the individual Basic Compressor decisions leading to were

_Z[-] = CFS['] for each block /_I.4 (3-27) further breaks down to1 '

n .,. ':_I0 ':__Z...... (3-28)g8 = I * i0 ,:-"I0 * _Z
\

9_'here.,der may verify that_ i
w

,jz[MI~4]= I0111100111011110110110001000100 "__

00010000101 I001 I00100 (3-29)

•Z[I_IZ]= 00010000010011100110111011100010 ,?

0001001001001001 I01010100 (3-30) ,_

~4
,_z[M3] = 01001011011001110000100101100011 .

1011111010110001101010001010011100 '_

(3-31) i

and that equality is obtained in (3-25) '_
?

tNote that successive use of operator _ [.] in (3-17) would require tewer bits
-4

for this example. .:

t
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~k
Observation. Note that the actual location of the LSB sequences L.1

need not be as prescribed in the development of qJ8[.]. For example, they

could all be located before the Basic Compressor blocks, or individually

after each Basic Compressor block they correspond to. Such variations to

08[ -] have no effect on perfo='mance but may be a useful implementation

consideration.
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IV. EXTENDING EFFICIENT PERFORMANCE TO VERY LOW ENTROPIES [
}'OR NON-BINARY SOURCES

As noted from Fig. 2-5 if the variations in data entropy result in values __:
i

much below 1 bit/sample the efficiency of the Basic Compresser operator

_4[-] suffers. This chapter develops a code operator structure for extending

good performance over this lower range of H(P) when _ of non-binary sources

1

are a priori unknown except for the usual preprocessing assumptions in

Chapter I (see Fig. I-i). A basic requirernent in the definition of this structure

is the existence of a separate code operator which is capable of providing effi- i

cient coding of binary memoryless sources with a priori unknown (and varying)
J

probabilities. Since the latter subject is of general interest by itself it _. given

a separate treatment in Chapter V which provides the development of a class of

such binary code operators. Appropriate substitution of these results into the ,.

operator _tructure of Chapter IV completes the definition of a class of non-

binary code operators which will maintain efficient performance when H(P) is

very low.

REWRITING THE ENTROPY EQUATION

Data Model _<

We can obtain motivation for developing an adaptive code operator by first

investigating an idealized data model. Let

= zI zZ .... zT (4-I)

be a T sa2_'pl -_ sequence from a discrete memoryless source with known and ',

fixed probability distribution P with the usual symbols 0, I, 2, _'' q-I and the

probability ordering of (I-8) (i.e., the idealized output of preprocesqing opera-

tlons in Fig. I-I).

t
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P_elati nship with P

As in earlier chapters, P denotes a measured average distribution of

samples. If these samples are from the ideal memoryless source with distri-

bution P then _ will equal P ifwe make the measurement span long enough.

Spiit_in_ the Source

When I-I(P)=H(P) drops much below 1 bit/sample the sample distributions

start taking the form shown in Fig. 4-i.

m

<

8

0 1 2 3 4 5

SAMPLE_ cS, i

Fig. 4-1. Sample Distributions When H(-P) -* 0
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" The important characteristic to notice is that the probability spike at zero

seems out of place from the remainder of the distribution. The coding philosophy

we have followed so far suggests that it may be advantageous to treat these dis-

tinctly different parts of the distribation separately.

Indeed the source characterized by .distributions in Fig. 4-1 can be viewed

as a mixture of _vo sources, one with the symbol zero and the other with the

remaining symbols l, 2, -.. q-1. More simply we can get the desired motiva-

tion by manipulating the basic entropy equation in (1-9) rex_ritten here as

~ (1-Po)K-_

H(P)= -P0l°gz P0 ifzFo)/__2i l°g2 Pi ( ....] __
)

i_0

After some manipulation this yields

H(b} = H_(P0)+ (1 -p0 ) H 0 (4-3)

where

HIs(P0) = -P0 l°gz P0 - (I -p0 ) log Z (l-P0) (4-4)

and

i_0

• We recognize _'he first term, H_(Po) as the entropy of a binary memory-

less source with the probability of a zero equal to PO" More specifically, let

5 (4-6)

i
t_0

1979014634-071



¢

T be ttle sample binary sequence which identifies whether a symbol of Z is a

zero or not. Then H_(P0 ) can be viewed as the minimum average bits/sample

required to code [).

Since 1 =_.pi/(1-P0), H 0 is the entropy of a discrete memoryless source

with symbols i=1,2, -'" q-1 and probabilities pi/(1-P0 ). The latter terms are

simply the conditional probabilities

Pr[symbol = !li_0 ] = pi/(1-P0 ) (4-7)

of the original source and which, with the exception of the missing zero, also

satisfy (1-8) if the Pi do. Then H 0 can be viewed as the minimum average

lzits/sample required to code all the non-zero samples of 7. (where T large)

and (l-P0) represents the fraction of all the original symbols which would

typically be included in this sequence.

More specifically let T

5 (4-8)

be the sequence of all the non-zero samples of Zo Then H 0 can be viewe(! as

the minimum average bits/sample required to code () and (l-P0) represents the

fraction of all the samples of Z included in O. That is

= (1-Po)r (4-9)

Then by (4-3), the coding of long sequences from the origdnal source close

to H(P) can be achieved by "split._ing '' the sequence into taro new sequences [)

_'We will later relabel the O symbols to 0, 1,2, ''. q=2. This ha_ no effcct on

the entropy ar_unaents.

(, 1
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and (_, as described above and then coding each of the,n close ro their

corresponaing entropies H_(P0) and H0.

The remainder of this chapter and Chapter V will seek to develop adaptive

code operators which take advantage of these concepts while recognizing that

real world problems are not quite so idealized. While the memoryless assump-

t-ion and prr',ab,lity ordering can usually be approximated well in practice the

real P is generally a priori unknown and varying. Measured distributions, P i

and P0 may even average out variations in data characteristics. In these practi-

cal situations, as in previous chapters, the entropy expressions in (4-3} - (4-5}

serve as practical guides to performance but may no longer be bounds.

OPERATOR SPLIT [ • ]

Using the above discussions as a guide we define the reversible SPLIT[. ]

operator by

SPLIT[Z] - "_D* O (4-I0)

where Z is the T sample sequence in (4-1}, D is a T sample binary sequence

"identifying" which samples of Z are non-zero and, O is a sequence of all the

non-zero samples of Z reduced by 1 Specifically

D = dld z .... d.r (4-11}

where

I Oft z. =0
1

di = (4-1Z)

i 1 otherwise

")'This amounts to a relabeling of the original e in (4-9).

6Z
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and the

N =_d i (4-13)
i=l

samples of

- eI 0z 03 • • • ON 14-14)

can be generated by testing successiw _. samples of Z and creating new samples

of 0 from Z by the rule

!

Create next Ii

If z. > 0 sample of O (4-15)
": J

0=z.-!
J

[.

O],serve that by subtracting 1 we have essentially done the relabeling

described in Fig. 1-1. By (4-7) the relabeled O symbols O,l,2, .'' q-2

will satisfy the desired probability ordering in (1-8) if the input z i do.

Reconstructing Z from D and O is obtained simply by testing successive

samples of I) and generating the corresponding samples of Z from O by the rule:

Ifd. = 0 z.=O
1 1

14-16)

z. =0+1
1

Ifd. = 1 where 0 is next

sample of
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CODE OPERATOR

The SPLIT[-] operator just defined allows us to specify the general form

of a new code operator _,9[.] by

_9[_]= ,,,_[_,]* %[6] {4-_7}

where.,o[-] means any ,-ode operator for coding the variable length 6 sequences

and dJj
_[.] is any binary code operator for coding the [3 sequences. A block I

T

diaoram_ is showi_ in Fig. 4-2. Included arc tlae usual performance estimates *i

(bounds) for later use.

_'9[ }

I- I
I

I

Sa,T(. ] _ % [. ]

_,_[_1 *%[_1 !

_,_[.]

! Y0

])'ig. 4-2. General 1Por,n. Operator ¢9[.l

i
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As noted in earlier discussions, operator ,$9 [-] will be an efficient

operator for Z. sequences if0_ [.] and _O[.] are efficient operators for D and

sequences respectively. Since distributions of Z are in practice a priori

unknown and varying, so too are the corresponding distributions of samples of

5 andOo For _9[-] to be an effective operator _J_[-]_ and %[.] must be able to

adapt to variations in the statistical character of D and @.

Codin of %[-]

Of course any algorithm for coding @could be substituted for QS[.].

For our purposes we will assume an operator form utilizing the Basic Com-

pressor, such as _6[']in (2-70} or some equivalent variable length form of

_8 [- ]or a_[-] utilizing split sampte modes (see Fig, 3-3}. The specific algorithm

details would of course depend on the particular application. However, based on

the results of previous chapters an appropriate choice of such operators should

provide a broad range of efficient performance as entropy H 8 in (4-5) varies.

Estimate of ','(dJ0[@])o Since we have specified that ,,O[. ] be an
operator

form utilizing the Basic Compressor, estimates of performance of the type in

(2-75} are easily obtained. Following earlier notation, we let _8(_) represent

this estimate.

Coding of D, ¢_[.]

Again, any algorithm for coding the binary D sequences could be substi-

tuted for¢_[.]in (4-17). We will provide an efficient class of such binary code

operators in Chapter V.

Estimate ofT' B . As we did for ' .] we let_ (D) represent an

estimate of'Y'r,_eD])of the form in (2-73). Thenasin Fig. 4-2,vealso have

the equivalent form for _9 [.]

_'9(Z) = Y_(5) _ ye(5) (4-18)
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Operator +I0[-]

The design of operator qJg[.] is motivated by the distinct spike at zero in
1

symbol probability distributions when H(P)---0. However, by (4-3)

operator Q9 [-] will be efficient for any H(P) provided both operators _[-] and

QS[-]are. Unfortunate[yrequiring_9 [-] to be efficient at high entropies in addi-

tion to low entropies places unnecessary demands on the design of Q_[-]. For

example, when H(P) is very low P0"I whereas when H(P) becomes large and

the distributions flatten, _0-_0. Thus ¢_[-] is required to be efficient for

unknown and varying P0 in the range from 0 to I. This additional requirement

can be avoided in most applications by instead specifying another operator,

010 [.], which selects between _9 [-] and some operator which can efficiently

code Z at the higher entropies. Such operators were the subject of previous

chapters. The nlost general form was o8 [-] in Fig. 3-3 for which special cases

include operator %65[-]or _4[,j when there is no need for split-sample modes.

In this case the 4 or 5 replaces 8 in the following discussions.

It is a simple matter to define _i0 [.], following the same procedures as

in earlier chapters

=× • (4-19i

where k is the selected code operator number 8 or 9 (the concatenated k being

interpreted as a binary zero or one}. It remains to specify the decision rule to

complete the definition of _10 [. ]. _

O/_timum rule. Again the optimum rule is simply to count bits, choosing _"

;_ such that _']i

!
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However, use of the Basic Compressor estimates can result in

considerable simplification.

Simplified rule. Instead choosek such that

_k(Z) - min Yi(Z) (4-21)
i=8,9

Noting that k requires one bit for "dentification we also have

< I
and w-here typically

_(5510[_]): Ylo(Zl (4z31

With Q8 ['] available as an option which performs efficiently when H(P) is

high, a less sophisticated form of 559[-] (which works well only at very low

entropies) can be assumed. In this case, the decision rules in (4-20) and

(4-2.1) -vould always choose k= 8 when H(P) was high.

Further simplifications. To further take advantage of the existence of

the option 558[.], note that in general a 0 buffer equal in size to the length of

is required. But this buffer will tend to fil] up only when H(P) is high and

P0 is low. But then d_8[-] is the code choice. Consequently the required

buffer size can be reduced. Let

B e (4-Z4)

be the length of this buffer and supplement the simplified decision rule by

adding

Set k = 8 if '/'(_) z B 8 (4-Z5)
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' to override the decision in (4-21). B 0 can be experimentally chosen so that

with high probability there is negligible loss in performance.

Block Diagram, 410 [. ]

A block diagram describing %510['] using 4-21 and 4-25 appears in

Fig. 4- 3.

P ERFORMANC E

Extensive tests of a sophisticated %59['], using appropriate substitutious

for_['] from Chapter V, indicate average performance which remained close

to H(P) for any H(P) in the range of 0 to 8 bits/sample, _here P was a priori

unknown and not changing signifi-_antly over the measurement span. This is

shown in Fig. 4-4.

Average performance considerably under H(P) was observed in situations

where P changed significantly over the measurement span_ /

EXAMPLE i:

iAn example of the use of SPLIT[-]is given in Fig. 4-5 for a T=256 sam-

ple 7. sequence. Observe that the O that results is the same as I_In in the

example of {3-18) and {3-19). Thus the coding of O for operator %59[.] in (4-17)

has already been described as a special case of %5o[.]with

This example will be continued in Chapter V after first de\eloping appropriate
1

binary code operators for _) (see 5-47).

J'Thesc tests were run on trausfor,,l coefficients of the RM2 im_,ge compressor

algorithm. [5] _,
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V. CODING FOR BINARY MEMOR YL qS SOURCES

WITH UNKNOWN STATISTICS

This chapter provides a class of efficient code operators for real binary

sources which can be realistically modeled as memoryless with _ priori unknown

and varying probabilities.

Several of these binary operators, denoted_b_t.land,_,t.]are
intimat_ y

related to the non-binary operators, 49[.land _I_' ]' developed in Chapter IV.

It will be advanta,,_eous for the reader to become familiar with the structure of

the latter operators before _.'oceeding into the details here.

PRACTICAL ASSUMPTIONS

Data Model

Let

I) = d 1 d 2 ... d T (5-1)

be a T sample sequence where the d. are the output of a binary memorylessx

source with probability of a zero, PO" To reflect real world variations in PO

we will generally a_sume that the PO for each [)is a priori unknown and where

PO can lie in the range 0 _<PO -< I.

Binary Entropy

From (4-4) the binary entropy function is g,ven as "

H_(P0) = - P0 l°g2 P0 - (I - p0 ) logz (I- p0) (5-Z) i

and is shown in Fig. 5-1 for 0 _< P0--" !. 1

: )
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Q:lite unsurprisin,_ly, ll[3(p 0} is symmetrical about P0 = 1/2 where Hi3(P 0)

reaches its maxinm,n xahte of 1. At this point zeroes and ones are totally random.

As noted from previous discussio,_s the inte,'pretation of entropy in practi-

cal problems usually requires some caution. The use of H_3(-} generally requires

the n.easurement of an average probability, P0' determined over a span of

samples which may be much larger than the length of D. When the re.l P0 is

slowly varying over this naeasurement span then average code perfor.nance .bore

but close to Itt3(P0) can be viewed as "efficient. " Hl3(P0) acts as an approximate

bot,nd in this case because the data behaves like an ideal memoryless source.

However. if data statistics are sionificantly changin.,., over the mecsurement span.

P0 will average out the chanoes. Since i-I[3(P0_ cannot account for the possibility

of adapting a coder to these variations, average performance below HI3(I_ 0) may

be possible.

The remainder of this chapter will seek to develop binary code operators

which cxiaibit efficient performance char._cteristics in the sense described alloy,.,.

PR EI-'ROCESSING OF

The samples of [) are not in a form _,_itable for a direct application of pre-

v,ously developed code ope:,;.tors. This section will provide the necessary pre-

processing or" 19. In so doing we will restrict the choice of various parameters

to simplify discussion and potential practical imFlementations. However, it is

felt ,hat the chosen parameter:, are a good choice from a performance standpoint

: also. More general ;,:vestigations are left for further study.

th
e Extension

We first restrict the length of D to be multiple of e so thrt

,'/'(19)= T = re (5-3)

74

!

1979014634-085



' th
Using operator Exte[ • ] frona {2-o} yields rhe e extension of b

B': Exte[S!- di d_ d_... d r (5-4)

where the r samples of D' take on the vahtes 0. 1, 2 .... 2 e-I determined by the

corresponding b!ilary e-tttples of [). That is. the standard binary representation

. th
of d! is simply tile i consecutive e-tuple of [). We will principally rely on thet

context of a discussion to identify whether a d! refers to its non-binary value orl

its binary representation.

e-tuple ProbabilitE. If the binary digits representing any d_ are the resultl

of a binary memoryless source then the probability t!mt these digits will form a

partic:llar e-tu,_le with j ones is easily given as

1
_'r . --- P0 1 - (5-5) 1;

L j ones I

whereThere areP0is the ust,aI probability that an individual binary digit will be zero. I]i

(e) = el (5-6) Ij j:(e-j)" |!

such e-tuples. Then, provided P0 -> 1/2 we must have I

t
J ones k i' > j one i

Conversely, if p0 -< 1/2 the inequality sign in (5-7) reverses.

Tl:us while D_ :s a sequence of (approximately) independent sa_nples takiz_g

on the values 0, 1, 2, ... 2 e-1 these values do not occur with the desired proo-

ability ordering of (1-8). For example, by the above arguments i,,
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r e-tuple ] [Ne-tuple ]]
_,-[d.': 4] : p_ - w [di =3] : pr ' _.

: _000... OlnO o ... el

(5-81

where P0 > 1/2. Thus E)' must be preprocezqed further before the re:'ults of

earlier chapters can be used.

Orderin_ Probabilities

We propose two reversible m:,ppinus of d' samples _iven by fnI. ] ,and

fl [-]. Tile functional specification of these mappings can be described by tile

following:

AO=,• toidl ] {5-91

and

,.al=,.q[dl] (5-1o) ::

whereA0andA 1 take on the values 0, ! 2, 2e-I (non-binary interpretation)1 I " " " °

and where
4_

is satisfied for _ = 0 when PO - l/2_;ii_rt for _ = 1 when PO 5 1/2 (provided the

binary memoryles_ source model holds for the digits of I3).

Extending our notation slightly, the application of f_[.1 to all the r samples

of I3' in (5--D yields the sequence,_ given by

,_ = .&[15'] = .f_[rill:, /{[dil: ... /'{,[d_.l

i i _ (_-,2} := A ":-A ...Iv ,"

where ._ = 0 or 1.

7{;
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I

Then by the above assumptions for the f, [ • ], eit : r "_0 or &l should meet

the desired requirements for a preprocessed data sequence in Fig. I-I when

0 <_ P0 2 I. Further, since the operations of Exte[ -] and [_[-] are reversible

the per sample entropy of_ should be increased (by a factor of e) into the

efficient operating range of the Basic Compressor. The results of preceding

chapters should be directly applicable. A block diagram summarizing the dis-

cussion and notation thus far is given in Fig. 5-2. \

.Derivation and Implenlentation of f_[-_._J_]

From (5-7) we see that to obtain the ordering in (5-11) for P0 > I/2'f0[" ]

need assign the number zero to the all zero e-tuple, the consecutive numbers I

to (l)to e-t.,ples ,,'ith a single one, the nun,ber_ (i)+ I up to (i)+ (2)to

e-tuples with two ones and so on. Without any additional constraints the partic-

uiar assignment of numbers to e-tuples with the same number of ones ;s

arbitrary.

An fl [" i mapping which results in the desired ordering in (5-11) when

P0 -< 1/2 c_n be described in exactly the same way by reversing the roles of

zeroes and ones. We will investigate this further.

Joint Implementation of f0 [" ] and fl ['.._]. Let i, be any binary e-tuple and

_ its bit _y bit con,plemer_t. '_re note tllat if ,, is on_ of t],e (_)possible e-tt,ples

with j ones then P is one of the e-j

can then implement .fo ['] and ,fl ['] as a table lookup by arrang£ng all possible

e-tuples so that e-tuples with fewer ones appeor at a higher position (closer to

the top) and that if I, is in position k-1 from the top (counting zero), _ appears

in position k-1 from the bottom. Then ,fo[V] is the position of _, fron_ the bottom.

%his is shown in 'rable 5-1.
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"t

Table 5-1• Arrangement of fr[.]ior Table Lookup

l'osition from Top f0[. ] Input e-tuple Position from Bottom /1 [']
'4 ,,

0 all zeroes 2 e - 1

1 00 .... 001 ,e ,

2 O0 .... 010 2 e 3

I i I

k - 1 V (has j ones) Z e k

!
i

i I

2e _ k _(has j _eroes| k - 1
t !

l 'Ze - 1 I all ones 0

Then

fl[_] = fo[.l

and similarly (5-13)

.fo[P] = fl I,,]

This means that fl[v] can be obtained by first complementing an input e-tuple

and using f0[.] as shown in _ig. 5-3. However, if both f0[v] and fl[v] are

simultaneously desired, this approach requires two table lookups. This can be

avoided.

Simply note that while ,f0[v] is the position of from the top of the table,

fl Iv] is the position from the bottom so that

i.
fl Iv] = 2e-1 - fO Iv] (5-14) :.

But (5-14) is the same as
?

f][.] = .:f-o[u] (5-15) '
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INPUT ZO[V ] •e-1 dPLE

is i

I

I,
[

i
!,

fl["]
COMP[ " ] _ _Co[" ] _ -(2-9)

Fig. 5-3. Implementing if0 ['] and fll ['], Method I i
t_

where
]

i_.

/0tvj: COMp[.%tv]] }_

is the bit by bit complement of f0[v] interpreted as a binary e-tuple. Thus ii

t:1 [. ] and f0 [.] can be implemented as a single table lookup as shown in Fig. 5-4. !
I
;?
I

•-TUPLE ._0[" ] _
• _ /o[. ] • - !,

v I
1
I.
12

COMK'] rl[ ;']
(2-9)

Fig. 5-4. Simplif;ed Implementation Of_o ['] and,_l [.] i,_
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__0[.] and 3c1!.] for e : 4

We will henceforth restrict the parameter e to be four. This choice has

some practical advantages with no obvious disadvantages , s far as coding per-

formance is concerned. Quite without surprise, we will seek to make use of the

code operators developed in previous chapters. If we restrict e to be 4, the

preprocessed samples of _ in (5-12) will bare entropies in the range of 0 to 4

bits/sample, quite suitable for a direct application of the Basic Compressor

operator developed in Chapter II. Higher entropies might necessitate split-

sample modes as described in Chapter III. This would be an unnecessary com-

plication for this application.

A complete table defining both _c0[.] and jCl[.] for e = 4 appears in

Table 5-2.

GENERAL CODE OPERATOR STRUCTURE

Since by (5-11)and the preceding developments, z_0 and A 1 satisfy the

desired requirements for preprocessed data sequences (Fig. l-l) the results of

previous chapters should be directly applicable. The most obvious example is

to use the Basic Compressor operator, d_4[.], to code E) by treatingg0 and _l

as single J = T/4 sample Basic Compressor blocks or to partitionA0 and/_l into

several smaller blocks and then apply %65[.]from (2.-71)._ More generally, any

operator, say ¢0 [.], can be used to codeg0 and/_l in the same manner. To this

end we define

_Note that when usin_ %65[. ] there is some obvious practical advantage £o restrict-
in,., the length of theH i (and hence E)) to be a multiple of some convenient Basic
Compressor block size J (e.g., 16). Then from (5-3) we have

V'(_i) = T = T'j _5-16)

and

'/*(E))= 4T'J (5-17)
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Table 5-2. _0 ['] and fl ['] for e = 4

Input 4-ruple _0 [v] fl [v]
V

f
J

Non As Non As Non As

Binary 4- Tuple Binary 4- Tuple Binary 4- Tuple

0 0000 0 0000 15 I lii

1 0001 1 0001 14 III0

2 0010 2 0010 13 ! I01 "

4 0100 3 0011 lZ 1100 ?

8 I 000 4 0100 II 1011 _"

3 0011 5 0101 10 1010 ' _

,% O110 6 O110 9 1001

5 0101 7 0111 8 1000
f

10 1010 8 1000 7 0111

9 I001 9 I001 6 Ol I0

12 11 O0 I0 I 010 5 0101
/

7 O111 11 1011 4 0100 :

II 1 0 1 1 12 I 1 0 0 3 0 0 1 1

13 1101 13 1101 2 0010 "

14 1110 14 1110 1 0001

15 1 1 1 1 15 1 1 1 1 0 0 0 0 0 :

¢
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]

_:,,_j[ _] (5-18)

where _ identifies the selected choice of preprocessed sequencego or_l (the

concatenated 1_being interpreted as a binary zero or one) and j is a priori fixed

(e.g., 4 or 5).

Decision Rules

Optimum. By counting bits _ is chosen such that

f_"(%bj[/_]) : min _'(qJ_[/i_]) (5- 19)i=O, 1 J "

Simplified rule. By using the Basic Compressor performance estimates

(bounds), _ is chosen such that

yj(_) = rain yj (Hi) (5-Z0)
i=0, 1

Since _ requires one bit for specification we have the bound and estimate for

_[f)] given by

_(_ [_1)_<y (_)= I + yj(_) (5-zl)

]Via)orityrule. In sG:ne applications itmay be acceptable to simply choose

by the majority rule

T

0 if d i < ,..
i=l

= (5-2Z)

1 o,+herwise
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The applicability of this rule is most suitable when P0 is slowly varying

and the length of D is large or when an operator is expected to ope "ate only for

very low or very high values of P0"
l

Note that (5-21) is stilla useful estimate when (5-22) is used instead of (5-20).

Block Diagram

A block diagram describing @ [.] is shown in Fig. 5-5 as _uming the simpli- i

fied rule in (5-20).

Restricted Range of p0___ [....!]

la some applications the range of P0 may be limited to either 0 _< P0 < 1/2

or 1/2 < P0 -< 1. Quite obviously under these conditions, there is no need to _o

choose between F_0 or F_1 for coding purposes, and correspondingly no need for

the _ identifier in (5-18). It is useful to define two simplified operators which

fit these conditions. Define %b_,[.] for _ = 0 and 1 by

,_,[I)]= ,j[_] (5-23)

where we a priori choose _ = 0 ifp0 >-I/2 and _= I, otherwise. The block dia-

gram for 02_[']in Fig. 5-5 reduces to that shown in Fig. 5-6.

THE BASIC BINARY OPERATORS

A direct application of the Z _ _ic Compressor to the codin,, of the/_ in

Figs. 5-5 and 5-6 yields "the Basic Binary ,Operators" _[.], L_[.] and _,['],

'[']. We will investigate these operators further in this section. Before pro-

ceeding, note that %b_[']is really a special case of _['] in which only one Basic

block is used. Sirailarly, the eJ,[.] are really simpler versions iCompressor
p

%b_['] designed to work over half the range of p0. Thus we can concentrate on !
of

/

¢$['] w,thout loss in generality.

I
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I I

I I -r-

2 9+

Fig _-6. Op'-rator _g,[.] for Limited Range of P0

Implementation oi Simplified Rule

Observe frcm the developments in Chapter II that an essential element in

the generation of Basic Compressor e_timates y4 (.) or _5 (.) _s the computation

of "fundamental sequence length" F. By (2-4), thzs amounts to adding the s_mples

making upa J-Sample Basic Compressor block. The test in (5-20) and Fig. 5-5 :.

suggests that these same compu_.ations are requi,-ed for each block making up ,!.

.both A 0 and F_lO Itowever, the structure of rabies 5-1 and 522 ca, be used to I

avoid a requirement to add the samoles Oral. The results provide an additional 1i-

practical argument for the use of a block .ze of 3 = 16 |_

%
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Two's Complement. Assuming the same partitioning of _0 and _1 into

J = 16 Sample Basic Compressor blocks let

i (3-24)_i xi1 x_... x16

be any sucb block from H i wi_h FS length given by (2-4) as

16

F i = 16 + (5-25) _

k=l

where i :-'), I.

By '5-]4) we have

1 0

xk = 15-xk (5-z6) :

We can then write F 1 as

16

F1 = 16 + E (15-_)
k=l

-16 +{256- F 0} (5-27)

or more simply

F 1 = 16 + Two's Complement IF 0] (5-28)

Expected Performance

Under the rather ideal assumption that all the T samples of L_ are the

result of a binary memoryless source with a priori unknown but constant PO'

!,
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i

the expected performance of _[-] and _[. ] can be bounded. The results of _"

Appendix A p covide a result of the form t

I E{SF(_[D])}-< 4 (Po' T)bits/sample (5-291

forj = 4and 5, and 0_< P0 -< I.

A plot of A_ (P0' 256) is given in Fig. 5-7.

Observe from Eq. A-2 that because P0 is assumed constant over the length

of D additional Basic Compressor blocks of _[-] actually degrade performance

by increasing the overhead. In this situation there is no advantage to adapting

since the data characterization is the same for aU of _). However, in many

practical problems P0 wiU change over the length of D and the added flexibility

to change code options may more than make up for the additional overhead.

Average performance under H_(_0), where PD is the usual measured averag_ of

PD' is a typical result.

_: Performance of ___['] . With no elaboration necessary, we have

i

; ._ E (_ ,[DI) -A (P0' T)--_ 15-30)

for j = 4 or 5, provided Po is limited to either PO _- I/Z or PO -< I/2,

of ,_5[_L" "Example

Let _) be the T = 256 sample binary sequence of Fig. 4-5. Following :_

Fig. 5-5 we obtain _)_ es •

J

_We ha_e taken the liberty to leave out the=additional parameter of _1for the _:

number of Basic Compressor blocks in _[. ]. i"

88

¢.

19790146:34-099



o.s

" Ii \\0.4

,, ' !1 \\
II \1

0.2 <

-"r - I i
• 0.0 ...........

0.0 O.l 0,4 0.6 0.11 1.0

liOIAliltlTY OF ZBIO, PO

i Fig. 5-7. Expected Performance of _[.] on Ideal Memoryless Source,
Unknown but Constant P0
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_ 1_' = Ext4[D] = (0, 0. 0. 0. 0. 0. 0, 0, 0. 0, 0, 0, 0, 0, 0, 0)_:

(O, 8, 7, 1, 8, 1, 6, 4, 1, O, O, O, O, O, O, 0):_

(0, 0, 0, 0, 8, 3, 14, 8, 0, 5, 12, 4, 4, 6, 1, 4)'::

(0, 3, 1, 3, 5, 5, 14, 7, 2, 0, O, 11, 12, 14, O, O)

(5-31)

where we have conveniently split I)' into four 16 sample blocks. Now applying
1

f0[. ] of Table 5-2 to each sample o£ _)' yiel_

A 0 = (0, O, O, O, O, O, 0,:?0."'0, O, O, O, O, O, O, 0)*

: (0, 4, 11,, 1, 4, 1.'-6/; 3, 1, O, O, O, O, O, O, O)*

(0, O, O, O, 4, 5, 14, 4, O, 7, 10, 3, 3, 6, 1, 3)'::

: (0, 5, I, 5, 7, 7, 14, 11, 2, O, O, 12, 10, 14, O, O) (5-32) .

Applying fl [. ] to obtain _1 can be done in several ways. The simplest is to use

Table 5-2 again, yielding
!

_1 = (15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 151':'

(15, 11, 4, 14, 11, 14, 9, 12, i4, 15, 15, 15, 15, 15, 15, 15)*

(15, 15, 15, 15, 11, 10, 1, 11, 15, 8, 5, 12, 12, 9, 14, 12)*

(15, 10, 14, lO, 8, 8, I, 4, 13, 15, 15, 3, 5, 1, 15, 15) (5-33)

r

We could also obtain _I by using (5-13) and (5-15). For example, take sample

, 19 of E)'. Its non-binary form is seven = 0111 = u. Complementing each bit we

e

9O
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get _'= 1000 = eight. Then usine Table 5-2 for f0(v) we get

t;(8) = 0100 _- four - f1(7).

Following the procedure in (5-15) we first obtain /0(7) = eleven = 1011,

Complementing each bit we obtain .f0(7) = 0100 = four. The same result.

Code Estimates, a_0 and/_ I have alrea,t_" been partitioned into 16 sample

blocks to accommodate application of the Basic Compressor in the form of ,.5[']

in (2-69). To facilitate notation, let

'_i = ";'i ( 1 )':-.z,i(2):-_i ( 3)::._i (4) (5- 34)

where the-Xi(_') corresponds to the partitioned blocks in (5-32) and (5-33) and

let

i
F_ (5-35)

be the fundamental sequence length corresponding to/_i(_ ). Then we have by

(2-74) and (2-28)

4 4

¥5(Ai)= E Y4(_i(_)) : 8+ E ¥1o(F_}) (5-36)
_=1 _=1

Making use of the procedures developed in Chapter II for Basic Compressor

estimates leads to the results for "_0shown in Table 5-3. I

Table 5-3. Estimates for _0

F_) 16 47 76 104
, ,. ,d

ID 0 1 2 3

YIo 6 47 58 64

!
.;.

' 91 :'

£

f
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Using Table 5-3, y5(_O) becomes

¥5(/_0) = 183 (5-37)
e

Making use of (5-271 or (5-281 we see that

v5(Aol << V5(A1) (5-38)

so that the simplified decision rule of (5-20) provides the choice of !

r_= 0 (5-39)

(the optimum rule of (5-19) also yields this decision). _:

Then by (5-211 we have !_

7'(q_[]5]) --_184 (5-40)

CodingA0: Making use of the Basic Compressor code decisions in /

Table 5-3 the coding of 15 using 0_['] takes the form

¢_[I51 = 0":-00..0[_,0(1)1::-01"::_1[._0(2)1:::10._,2[,_0(311:::11:::,_3[,_0(4)1 (5-41) :

The resulting coded Basic Compressor blocks are shown in Table 5-4. From the

table we note that _(_2[,%(3)]) = 56 bits. two less than the estimate shown in

Table 5-3. Thus

._(d?_[D])= 182 bits (5-42) Iii

Entropy. From _)we obtain the relative frequency of zeroes in E)as

204
P0 - 256 - 0.797 (5-43)

9Z
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Then using the binary entropy function in (5-2) !

' }.

H_(_0) = 0. 728 bits/sample (5-44)

By contrast I :

1 _ 5 ~ 182 _ :
-_c.q_(_p(D))--_ - 0.711 bits/sample (5-45) _

2 '
2

Optimum decision. It is worth noting that if we had actually used the opti- { _

mttrn Basic Compressor decision rule (counting b_ts) code operator %62[.] instead __=

of _1[. ] would have been chosen for block two, /_0(21, resulting in a redaction , ,_

of coding bits by 3. Note however that the advantage obtained by use of the

optimum rule is (by observation) typically much less than this.

Coding of 7.. Observe that the coding of b in this example completes the

coding example for non-binary sources initiated in Fig. 4-5. From (4-26) we

have

_(,e[_]) = 235 (5-46)

and using (5-4Z)we get i

&o(_bg[7.]) = 182 + 235 = 417 bits (5-47) I !

for an average of 1.63 bits/sample.

BINARY OPERATORS FOR VERY LOW ENTROPY

Using the ideal memoryless model with constant P0 as a practical guide,

note that the average performance of _ [.]or _ [.]in Fig. 5-7 remains within

about 0. 1 bits/sample of the entropy H_(P0 ) for 0 _<P0 _ 1. At P0 - 0 and

,i

|,
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P0 = I the performance "bottoms out" at 0.095bits/sample for the example

shown. As e._tropydecreases from a maximu._ of I.0, this (approximately)

0. I bits/sample difference represents an increasing fractionof H_(P0). In this

section, we seek to improve the efficiencyat these low entropy values.

A closer look at the distributionof the non-binary _ samples as p_ --_I

(see 5-5) reveals the same situationcharacterized by Fig. 4-i: a spike at zero,

dominating the distribution. This clearly suggests that the approach taken in

Chapter IV should be directly applicable to the coding of the _ and hence binary

sequence I). This is precisely the approach we will take. Itis suggested that

the reader review the operator structure developed in Chapter IV before

proceeding.

: Introduction to Operators _b_[.]and d_,[. ]

X

H fJ

A direct substitutionof operator _b9[.] from Fig. 4-2 intothe block diagrams

for d_[.] and _,[.] in Figs. 5-5 and 5-6 respectively, provides the twc
new oper-

ators shown in Figs. 5-8 and 5-9. A more elaborate expansion of _9[.] is pro-

vided in Fig. 5-8 for discussion purposes. At the same time, we have taken the

libertyto exl_andthe notationin an obvious way.

Recall tha_._ny operator indicated by the notation_b[.] is not completely

specifiedwithout reference to a "parameter string" which identifiesitsinternal

parameters such as input block )engths, decision rules, internal code operators,

etc. The sb[.] really identifya code operator structure.

With this in mind we can make some observations about _[. ] and _b_1[.].

X

H

Operator form. From Figs. 5-8 and 5-9 we have

1
I,

t

_, 95
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where we note that @_[.]and 4_,['] differ only in the fact that _ i_ chosen during

operation by 4_[']whereas it is preselected for 4_'['].
4
4-

Block Lengths. With T = .q_(f))we have, by (5-3) and (5-4)

Requirements for 40[']. Since the samples of _ and hence _% are 4-bit ii

numb :rs there is no need for split-sample modes by operator 40[. ]. _O ['] can _

be replaced by a variable length version of the Basic Compressor, _6 ["] in ':

(2-70). ,:
(

Operator 4_['__!.Now consider the block labeled 4_[" ]within 49 [•]in '_:

Fig. 5-8. Just as in the original definition of 49 [ . ], 4_[' ] can in general be any i£.

binary operator (structure) for coding the T/4 sample sequence f)_, including

4_['1 or 4_,['] which we are currently discussing. Thus the block diagrams i,,

Figs. 5-8 and 5-9 actually describe an infinite class of possible operators (e. g., i

the parameter string for any 49 [.]could specify 4_[ "1as its internal binary

operator 4_['], which leads to another 49[.] and so on). The usual theoretical _ _}

concerns for such infinite classes is not our main concern in this paper since
:! i

out interest here is to provide code operators for practical use. Howeve, we

iwill return to the possibility of expanding 4 ["]in this manner later.

i:
9S i :

_ %

i ,, ii ii i1_ - i ..-
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. r!

':'_ From (5-48) and Fig. 5-8, the per sample performance of _[ "1 can be :i

written as

where _(E)_) = T/4. Then under the assumption that all the T samples of D are

'_ the result of a binary memorytess source with a priori unknown but constant P0 i

:i (over _)), the expected performance can be bounded by I

i" =

-° where Ii' t ,/

a- and

a = max (Po'I -po) (5-54) ;_

and

4
b = a (5-5S)

I

Similarly, we note tha_ without the need to identify
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i

: The term A e in (5-52)bounds the expected bits " r A_ sample) to code ' "l

i the variable length sequence The detail,;are provided in Appendix B assum-

ing that 48[ "1= _b6[']and thatO_ is treated as a single Basic Compressor block. :

_ The expression A_ in (5-53)bounds the expected performance of a binary _ "_

operator _b [.1 on T/4 sample sequence E)_ with a priori unknown but constant prob-

"i ability of a zero given by b in (5-55). Thus a complete determination of expected

li perform ance for *_[" ] requires that internal binary operator q_[-] be specified.

i In general, _ [- ] could again be any binary operator, including the one we are
a

• _ currently investigating,d/_[.1. For example, ifwe letthe internal binary operator

of ['] be ._ [.l, the bound in (5-51) could be expanded to .:

.i A (P0' T)=_ + _ O ' +A b, _.• ?

! where

i__

: 1 I , +A b' I-_)} (5-57)A b, =T--'-_ + 4 0 ' ,

; and by (5-54) and (5-55) _

a' = max(b, 1 - b) (5-58) _

and '}

' b'= a'4 (5-59)

Clearly the expected performance of a large class of binary operators can

_ be derived by appropriate substitutionof parameters. _

i! I00

'k
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Example. An interesting example is provided by using the basic binary i

:_ operators _p [.] or _b [-]in the internal structure of _b [.]. The expected per- i

formance of these operators was investigated earlier and displayed graphically 1

in Fig. 5-7. Using _[.]as the internal binary operator of qJ_[.] yields the +

: results shown in Fig. 5-10 assuming an input block length of T = 256. The graph

was obtained by replacing the last term in (5-51} by (b, 64}. The correspond-l

1 ing results for _[. ] directly operating on D are repeated for comparison

purposes.

I0 I0
, .]

Introductionto Operators _b_ [-]and _p_,[-]

By Fig. 5-10 d?5[.]operating onA_ performs better than hb_[-]for a range

of intermediate values or P0" Following our usual procedure for such situations

we can simply choose between these operators. This amounts to replacing _Sj[.]

internalto qJ ['] (Fig. 5-5) and_b ,['l(Fig. 5-6) by qJl0['I. The resultingblock

lO[.]and I0
diagrams of binary operators _ q#_, [.] are shown in Figs. 5-II and 5-12.

Operator form. From the figures we have

= (s-60)1

and

I0 - (5-61)
_, [D] = kl,_¢kl[_ _]

where ;'l is either 9 or 5.I" Again the only difference between ¢_0[.] and +_P[']

is that + is chos,._nduring operation by +_0[.]whereas itmust be a priori selected

].

!!_ _¢_[.] or d_4[.]replaces the q_8[.]assumed in Fig. 4-3 here since the alphabet
+_i s_ze of A_is only 16 so that no split-sample modes are needed. Recall that
_ these operators are really special cases of 48['].

101
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10[.]
Decision rules for _. A selection of decision rules for choosing _ in _

' is described in (5-19) - (5-22). The simplified rule of (5-20) is preferred in

this case, and can be further simplified.

A direct application of (5-20) would require that _ be chosen such that

VIO(E_) = rain VlO(_i) (5-62)i=0, I

But by considerations of expected performance of _[-] and ¢_[-] just investi-
F

gated and practical observation, whenever the internal decision rule of ¢i0 [-]

would choose operator _9 ["] instead of _5 [-]we would also find that

¥9(E_) < V5(i _} < VI0(E_) (5-63)

where _= COMP[_]. Thus there is no need to consider _9 [-] in the determina-

tion of _. The decision rule in (5-62) reduces to choosing _ such that

V5(E _) = min ¥5(_i) (5-64)
i=0, 1

Internal decision rules. As in Chapter IV the decision rules for selecting

either 0_5[. ] or _9 [" ] may be simplified in some applications to reduce the

required buffer size for @_ samples. Following (4-24) and (4-251 the rule for

choosing kI is:
,!

Choose kI = 5 if ,_(@_) -> BS_

Otherwise choose k such that ,\
I i 'I

I

Ykl(__<) = rain yi(_) (5-65) i':• i=5,9 _'

where @_ buffer size BS_ can be experimentally chosen so that the loss in per- !/;
5[.]at !_

formance is acceptable. Basically, this rule forces a decision to use _

t_
!4

, 105 I}'
l
,
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_ intermediate values of p0. By Fig. 5-10 W5[-] is either the best choice or a

, good second best for a wide range of PO"

Choosing B 0 quite small rr.eans the 49[ .] is used only to improve i

performance for very high or low values of PO" Under these conditions an addi-

tional simplification results because the internal _[. ] will never be chosen

4 _ _:unless p_ > 1/2. Thusly['] can be replaced by _ ,[.]. The particular options _

chosen for implementation will depend on the particular application which may

not have such ideal stationary statistics. _ =

Expected Performance. A bound to the expected performance of operators

*17['] an d ,10[. ], assuming _} arises from an ideal binary memoryless source _ !!

: with unknown but constant P0' is easily obtained from previous results. We have

y -<A_ (P0' T) (5-66) :

where _2
;-

P0' T)=_ +man _,(p_, T), _,(p_, T) (5-671

and as usual

2_

O ifPo >- 1/2

r_= (5-68) -_

1 otherwise

5

Again we have assumed that _,[.] incorporates a single Basic Compressor

block making it equivalent to *$,[. 1. A graph of A_O(po, 256) would essentially

be the lower envelope of the curves in Fig. 5-I0 provided #9 [,] is terminated

i after one SPLIT[" ] operation and the O_ buffer is not restricted.

i Similarl_ without the need to identify _ A_O(po, T) is given by:. p

I0 _0 1_ h_,(p0, T) =A (P0' T) - y (5-69)g

106
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,7!

+.,

• lO ]and lO[.]
Multi-Level _ [. %p, __ ::

: As noted earlier any operator structure which includes _9 [. ] in its defini- .:

tion really defines an infinite class of operators. This is because the SPLIT[.] '_!
'3

operation results in a new internal binary source which must be coded by some ;;

binary operator d_ [.1 Since qJ [. ] may again contain the SPLIT[.] operation :_• :_

the procedure can be repeated ovel and over again. But the number of binary :_

samples decreases by four at each branch into this "tree of code operators. " ":_ _':

Thus the incremental impact on computation required for de'ision making at _!
each step diminishes rapidly.

, We provide an itlustration of the procedures by expanding _bl:[ • ] several

times yielding an operator which would code a T = 10Z4 bit all zero or all ones

sequence with only 11 bits, A block diagram is provided in Fig, 5-13 where we -:

have taken the liberty _o expand notation in an obvious way. AdditionallT, we )

have also elected to accept some slight loss in performance for this example by

choosing internalbinary operators _b_9[" ] and *_,[" ]in the expansion instead

I0 _ - "of _ _ ['1 and _ [.1. By earlier discussions (see 5-65) the e_ and O_, 0 buffers

in Fig, 5-1 3 can be substantially reduced,

Expansion of ,_0[. ]___:..The creation of multilevel operators such as ,_0[.1 in

Fig. 5-1 3 is accomplished by continually replacing tke binary operator _ [ • ] which

follows a SPLIT[. ] by another which also includes _ SPLIT[.]. For the example

in Fig. 5-13, we have

qJ_0[5] = _*kl*h_kl[A_] (5-70)

where k 1 equals 5 or 9 just as in Fig. 5-11. Ilk = 9 we would have1

_,,

{

107
!
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since we have used 4_, [" ] as the internal binary operator of 49[.]. _:

Expanding 4_ 0 [. ] we have

1o - xz**xz[5 ]40 ' [D_] = (5-72) 2;:

where again k 2 equals 5 or 9. Ilk 2 = 9 -i"

I0 ~ o.5 -
,,,4_. [D_] = 01.40[e_, 0] (5-73)

5 [.] as the binary operator for
since we have terminated expansion by using 4_,

5_, 0 (i.e. , @_,["] contains no SPLIT[. ]operation)._

Ifthe code decisions are actuallyk I = k 2 = 5 (very low or high p0) the :'_
10-

final expanded form of _ [D] is given as

4_0151 = _*k l*k2'I'o_,tS_,0]*40[Oc,0]*qe[_ {1 (5-74) ; :,

f "
Ah zero input sequence. If we take the length of [) as T = 1024 and ,_

assume itis either all zeroes or all ones, 4_O[D] will take the form in (5-74) ':i.

with both 40 [O_, 0] and 40[O_] contributing zero bits. Since _, 0, 0 reduces to a
5 -

!6 sample all zeroes sequence, qJ_,[D_, 0 ] will require only 8 bits, Adding in the

3 bits for g, k 1 and k 2wehave

_(4_0[f) ; all zeroes or all ones]) ; 11 bit,_ (5-75)

or approximately O. O1 bits/sample.

t _Note that using @_0[.] instead would change (5-73) to the form

,_ %b0[_] = ,[ ] [e ] (5-76)

I

i ,:r

108 _,_
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Fig. 5-14. Bounds to Expected Performance o£ Multi-Level ¢_ [. ] _

on Ideal Mernoryless Source, Unknown but Constar_t PO
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!:!

Additiorial Adaptivity i _

In many re._l problems PO may not only vary but the manner in which it ' _-

changes may also vary. Whereas the algorithms described in this chapter will ,)

typically perform well under a measured H_(_O) in these situations, in many

cases, it may be desirable to provide additional adaptivity. Such desirable e

modifications and extensions of the preceding developments will be the subject of
2"

future reports. )

)L

i

f"

1
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APPENDIX A _Jj,

: STATISTICAL PERFORMANCE BOUNDS

FOR ,_[ •]AND *_["]

Here we develop bounds on the expected performance of binary operators _}
| ',,,.

_['] and _[-] on T sample binary sequences D (5-1)under the assumption that [iIthe samples of D are the result of an ideal binary memoryless sourc_ with a

priori unknown but constant probability of a zero, PO' where 0 -<PO -< 1.

Specifically, we develop the result

_-Et._(*_[D])_-<A_(po, T, q) bit_/sample (A-l)

where q refers to the number of Basic Compressor blocks used _/_j[.] to code _

_in Fig. 5-5. A_P is given by :,

A_(P0, T, q) = (I + 2q)T + _ y,o(__) (A-Z)P

where ;,,
z.

_ = + 14p (I - p_) + 51p (I - ::D
/

' 3 p_)4]/ + 54p_(I - p_) + 16(I - (A-3)?
/

is a fu;,d _mental/_quenee length for a J : T/4 Basic Compressor 5lock and
/

/ 1

/ I° iP° -"

#
g

/ _ - (A-4)

1 otherwise

¥10 is evaluated using (2-27).

113
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!

4_

i

DERIVATION OF A_ _

' !iFirst observe d_at operator d_4[.]is a special case of operator d_5[.]for .

which only one Basic Compressor block is used (q = I). Thus, we can henceforth |_,i
I

assume j = 5. {.
.t

As in (2-67) and (Z-68),_,_ can be partitionedinto q Basic Compressor _

!/blocks so .hat

X_=_(1)'-_(2)_-'... _(,) (A-5) i i_

and where the _(_, consist of J.1 samples satisfying ii

T E _:"

Now tracing through the appropriate equations, by (5-21)
2

_'(%[D]) __ 1 + ¥5 [_] (A-7) ,A

Denoting the fundamental sequence length for X _(¢) by F_ and using (2-29) and

• (2-'/4) we have

7 - T _ E Y,o

where the firstterm is simply the overheadiu identifying _ and Basic Compressor

code options for the q blocks.

But by (2-32) we have

e=l _=I _i_

2 _
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, Using the binary memoryless assumption and recalling the mapping of _) into _L, "

F_ is given as

2
F_= E{F_I = J_[p_+ 14p3_(1-p_)+ 51p_(l _p_)2

)3: + 54p_ (1 - p._ + 16(1 - (A-10)

where quite obviously

H for - z
PO (A-1 1}

identifyingthechoiceof _asin(A=4). I.ilSubstitutingF_ in the _k (.)of (2-23) - (2-26) we _ee that each function is

a multiple of block size (ignoring truncation). Thus choosing the minimum in !_b

(2-28) is independent of block size. Operator decisions, ID, are the same for

each c ¢. the q blocks. Then the right hand side of (A-9) can more simply be

replaced by a single T/4 sample Basic Compressor block with expected funda-

sequence length given by _F_ in (A-3) with _ determined by (A-4).
mental

Comment

The reduction of the righthand side of (A-9) to a single Basic Compressor

block should come as no surprise. Because of the idealmemoryless model,

data statistics do not change over D. There is no advantage to adapting because

the extra code blocks just cost in overhead (i.e., Zq/T inA-8). However,

if dat-- statistics were actually changing over [), as in many practical situations,

the extra adaptivity might more than make up re1 the additional overhead.

115
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7
APPENDIX B

%

STAT IST ICAL P ER FOR MANC E BOU ND

Here we provide a bound to the expected bits/sample required to code O_

where O_ is the result of the SPirIT[ • ] operator on 7_ for operator _9r[ "] or

9,[. ] in Figs. 5-8 and 5-9 respectively, and T-sample input sequence D is ,_i_

assumed to be the result of a binary memoryless source with a priori unknown 1!

but constant probability of a zero, P0 (over 19). Operator @e [']=Q6 ['I frOm ii

(2-70)will be assumed to consist of only one Basic Compressor block, equal in !;

length to,'F(O_). .}_

The desired result is of the form {see B-10) _;

where

tO if PO > 1 : ,

-2

(B-Z) :

1 otherwise ! _

-;

p; = a = max ";0' 1 - p0 ) (B-3) ,

and

4

P_,O = b : p_ (B-4)

_We recognize pt as the probabilityof a zero in any bitposition of _.. That is,
after the decisidn _. Similarly, Pt,0 is the probability of an all ze_'o4-tuple
symbol in Xr. The additionalnotation a, b is provided to allow easier usage
in the main fext.
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DERIVATION OF Ae(p_, T/4)

By (2-28) and 12-39)

where

,.

and as in (4-9)

I 36 = E O_ =_- (1 - (B-7)

; i

i The expression in (B-3) is easily evaluated by noting that a sample of A_ .

i of value i will contribute i bits to the fundamental sequence for e_. Then by

summing the expected contributions for allT/4 samples we have -

T 45p_11 -_'O= _-[eOp_(l - p_)+ p_)2

+ 50p_(l - p_)3 + 15(1 - p_)4]

_'0 can be written into a more convenient form by factoring out p_,0 _..'

yielding _i

_'e = Je _r= (B-8)

where

__r_= _ 1Opt= + " "
P_,0

't

+ 15(I - pr=)3_) (S-9)
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, p

:" Bound Expr es sion

Substituting (B-3) and (B-6) into (B-Z) "xsing (Z-23) - (Z-Z7) t we get after

• simplification

T T {7 _-_ + Z, 4} (B I0)_Ae(p_, _) = 2 + 3emin _£2_- 2, _, 3

and we observe that this bound may be replaced by zero if p_ is precisely

I (there would be no O_ samples).

i
+

?Note that Y3 = 4 for thisproblem.
)

I 118

-;:7: .... - .... ' .................

1979014634-129



REFERENCES

I. L.D. Davisson, "Universal Noiseless Coding," IEEE Trans. Inforrnation

Theory, IT-19, June 1973, pp. 783-795.

2. R.F. Rice, "The Rice Machine, " Jet Propulsion Laboratory, California

Instituteof Technology, JPL Internal Doc. 900 -408, Sept. 1, 19 70.

3. R.F. Rice and J. R. Plaunt, "Adaptive Variable Length Coding for Effi-

cient Compression of Spacecraft Television Data, " IEEE Trans. Commun.

Technol., Vol. COM-19, part I, Dec. 1971, pp. 889-897.
T-

4. R.F. Rice, "RM2: transform operations, " Technical Memorandum 33-680.

Jet Propulsion Laboratory, Pasadena, CA. March 1, 1974.

5. , "An Advanced Imaging Communication System for Planetary , :
'i

Exploration," Vol. 66 SPIE Seminar Proceedings, Aug. 21-22, 1975,

pp. 70-89.

6. , "RM2: rms Error Comparisons," Technical Memorandum

33-804. Jet Propulsion Laboratory, Pasadena, CA., Sept. 15, 1976. _ '_

7. , "Potential End-to-End Imaging Information Rate Advan-
:_.

tages of Various Alternative Communication Systems, " JPL Publication :_

78-52. Jet Propulsion Laboratory, Pasadena, CA., June 15, 1978.

8. , "A Concept for Dynamic Control of RFV Information

_ System Parameters, " Proceedings of 1978 Military Electronics Exposition, °:

Anaheirn, CA., Nov. 1978.

• 9. H. Abramson, Information Theory and Coding, New York: McGraw-Hill,

1963. _
.J

10. D. Spencer, C. May, "Data Compression for Earth Resource Satellites",

' Proceedings of the 1972 ITC Conference, October 1972.

11. E.E. Hilbert, "Cluster Compression Algorithm, A Joint Clustering/Data i

C¢_mpression Concept, " JPL Publication 77-43. Jet Propulsion Laboratory,

Pasadena, CA., Dec. I, 1977.

,_-JPt-c,., tA.c,,,, 119

1979014634-130


